• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel transdisciplinary study uncovers microbes that may one day deter major grape disease

Bioengineer by Bioengineer
October 23, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The American Phytopathological Society

St. Paul, Minn. (October 2017) — To date, scientists are increasingly studying the structure of microbial communities and their composition associated with plants, but few have been doing so in the context of vascular diseases.

Such studies, though, can have a big impact on protecting crops through the development of bioinoculants and biopesticides — particularly for woody crops like grapes, which are generally associated with heavier chemical pesticide use.

This is particularly true for a bacterial pathogen named Xylella fastidiosa. When it multiplies in the stems of grapes and other woody crops, it impairs the movement of water and nutrients within the plant. This phenomenon, identified as Pierce's disease, is a well-known and economically important issue in the wine, raisin and table grape industries in California.

Pierce's disease has no cure and can kill vines in as little as two years. Finding a natural microbial deterrent to X. fastidiosa, the pathogen that causes Pierce's disease, can have a tremendous positive impact for grape growers and on the environment.

Enter Ph.D candidate. Elizabeth Deyett, Drs. M. Caroline Roper, Philippe E. Rolshausen, and several other researchers at the University of California-Riverside (UCR). They studied the microbial communities in grapevines and their connections with Pierce's disease of grape.

They used next-generation sequencing and modern bioinformatics tools to characterize the bacterial and fungal microbiomes living in the grapevines. They analyzed vine samples with mild symptoms of Pierce's disease, samples with severe symptoms, and finally samples that showed no symptoms at all.

Results showed that that the microbial communities inside the grapevines studied were mainly composed of bacteria and fungi — particularly Proteobacteria and Ascomycota — with Pseudomonodales and Pleosporales, respectively, as the main bacterial and fungal orders.

Their data also suggested that the clustering of bacterial communities appeared to be driven by the abundance of the bacterium Pseudomonas fluorescens and X. fastidiosa.

"Interestingly, we found that when the Pseudomonas and Achromobacter species were present, Xylella fastidiosa was in lower abundance, and Pierce's disease symptoms were less severe," said Rolshausen. "This suggests that these organisms may contribute to vine health and have potential use as beneficial microbes that either promote plant health or directly compete with the pathogen."

"This research is highly interdisciplinary, involving microbiology, microbial ecology, plant pathology and bioinformatics. And through this research, we are just now beginning to understand what microbes are there," said Rolshausen. "This inspires us and hopefully others to begin understanding the function of these resident microbiota."

###

More details of this study and its findings are freely available in an article titled "Microbial Landscape of the Grapevine Endosphere in the Context of Pierce's Disease." The article was recently published in the fully open-access and transdisciplinary journal, Phytobiomes.

About Phytobiomes

Phytobiomes is a fully open access, transdisciplinary journal of sustainable plant productivity published by The American Phytopathological Society. Phytobiomes publishes original research about organisms and communities and their interaction with plants in any ecosystem. It also provides an international platform for fundamental, translational, and integrated research that accomplishes the overarching objective of offering a new vision for agriculture in which sustainable crop productivity is achieved through a systems-level understanding of the diverse interacting components of the phytobiome. These components include plant pathogens, insects, soil, microbes, weeds, biochemistry, climate, and many others. Follow us on Twitter @PhytobiomesJ.

Media Contact

Phil Bogdan
[email protected]
651-994-3859

http://www.apsnet.org

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-08-17-0033-R

Share13Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.