• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chromosomes may be knotted

Bioengineer by Bioengineer
October 20, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ill./ ©: Jonathan Siebert, JGU

Everyone knows that long bits of yarn, or charging cables and the like, tend to get quickly tangled and form nasty knots. Little is known about the structures of our genetic material, chromosomes, which also consist of long strings that — according to our experience — should be likely to become knotted. However, up to now it has not been possible to study this experimentally.

Researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now found that chromosomes may indeed be knotted. "We used mathematical algorithms to examine 3D polymer models of chromosomes that colleagues from Cambridge University had generated from experimental data," reported Dr. Peter Virnau of the JGU's Institute of Physics. "It has not previously been possible to determine whether chromosomes are actually knotted because there is insufficient knowledge of their exact three-dimensional structure. But using the chromosome models published by the specialists in Cambridge, we found that they were entangled."

For their calculations, the physicists in Mainz utilized the 3D chromosome models that were published in the spring of 2017 [1]. The Mainz team extended these models at both ends and then linked them together as it is only possible to subject closed rings to mathematical analysis to see if they contain knots. "Just imagine grabbing both ends of the chromosome and pulling them together," explained Virnau. The researchers then employed special mathematical algorithms to examine the extended model.

The research team at Mainz University speculates that whilst entanglements between chromosomes need to be removed for cell cycle progression those within a chromosome may not affect function and transmission of genetic information. There are also certain protein strings that have complicated knots, something that experts in the past would have found surprising. And even the DNA in viruses that attack bacteria, so-called bacteriophages, is knotted. While the knots in these special proteins seem to always form in the same position, they appear to occur randomly in the case of the viruses. Dr. Peter Virnau speculates the same could also be true in chromosomes.

The team in Mainz is unable to say as yet whether their results are an artifact of the simplicity of the polymer models used to represent chromosome structures, or whether they indeed indicate the real form of chromosomes. Nevertheless, the calculations undertaken in Cambridge and Mainz suggest that chromosomes may be knotted.

###

[1] J.T. Stevens et al, 3D structures of individual mammalian genomes studied by single-cell Hi-C., Nature 2017, 544, 59-64.

Media Contact

Dr. Peter Virnau
[email protected]
49-613-139-20493
@uni_mainz_eng

Startseite der JGU

Original Source

http://www.uni-mainz.de/presse/aktuell/3056_ENG_HTML.php http://dx.doi.org/10.3390/polym9080317

Share12Tweet7Share2ShareShareShare1

Related Posts

Unlocking Functional NLRs via Expression and Phenotyping

Unlocking Functional NLRs via Expression and Phenotyping

September 23, 2025
Beyond Reflexes: How the Spine Influences Sexual Behavior

Beyond Reflexes: How the Spine Influences Sexual Behavior

September 23, 2025

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Factors Influencing Consumer Preference for Pesticide-Free Veggies

Unlocking Functional NLRs via Expression and Phenotyping

Improving Sleep to Prevent Delirium in Home Hospitals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.