• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New gene editing approach for alpha-1 antitrypsin deficiency shows promise in UMMS study

Bioengineer by Bioengineer
October 19, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WORCESTER — A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased liver with healthy cells. Alpha-1 antitrypsin deficiency is an inherited disease that causes liver and lung damage; the Mueller lab's approach to the disease, led by postdoc Florie Borel, PhD, and published in the journal Molecular Therapy, combines the use of RNA interference with gene augmentation, using an RNAi-resistant version of the alpha-1 antitrypsin gene. This dual treatment has the potential to prevent both liver and lung damage from forming in very young patients.

"This is a significant win for gene editing," said Christian Mueller, PhD, associate professor of pediatrics and senior author of the study. "If healthy or gene-corrected liver cells have a selective advantage over cells with the alpha-1 antitrypsin deficiency mutation, then it is possible that by treating only a few cells, those healthy cells will 'outcompete' the diseased cells. And because liver cells regenerate easily, this can create a big advantage therapeutically."

Alpha-1 antitrypsin deficiency, or "alpha-1," is a single gene disorder. A mutation causes the misfolding of the alpha-1 protein, leading to the loss of its normal biological function. Without the protective activity of this protein, certain enzymes damage the lungs, leading to emphysema and chronic obstructive pulmonary disease, a debilitating and potentially deadly condition that often remains undiagnosed. In about 10 percent of patients, this misfolded protein, which also accumulates in the liver, can cause damage leading to cirrhosis of the liver.

Currently, there is no curative treatment for the disease; many people with the disease manage the symptoms with intravenous infusions of alpha-1 antitrypsin purified from donated human plasma. New clinical approaches using gene therapy and gene editing form the basis of a treatment to remove the source of the toxic protein in the liver, while ramping up production of healthy alpha-1 proteins.

Alpha-1 antitrypsin deficiency affects at least 100,000 people in the United States. An estimated 20 million people carry the gene for the disease and could pass it to their children. That's as many as carry mutations for cystic fibrosis, which is much more widely recognized.

"Gene editing with alpha-1 antitrypsin deficiency alone can do a lot of what CRISPR/Cas9 [currently the most widely-studied gene editing tool] does, just at a lower efficiency," said Mueller. "In cases where there is a competitive advantage, only a low-level of editing is necessary, allowing the corrected cells to expand and, in this case, both prevent liver disease and make therapeutic levels of the normal alpha-1 protein."

The key to the new discovery was inspired by a collaboration with Lenny Schultz, PhD, professor at the Jackson Laboratory, and the labs of Michael Brehm, PhD, associate professor of molecular medicine; Dale Greiner, PhD, the Dr. Eileen L. Berman and Stanley I. Berman Foundation Chair in Biomedical Research and professor of molecular medicine; and Terence R. Flotte, MD, the Celia and Isaac Haidak Professor of Medical Education, executive deputy chancellor, provost and dean of the School of Medicine, at UMMS. They worked to develop a new humanized liver mouse model with the mutation that causes alpha-1 antitrypsin deficiency. Other mouse models are very fragile, explained Mueller.

Future research will include a formal toxicology study. Currently, there is no large animal model of alpha-1 antitrypsin deficiency that would allow preclinical testing.

"What we have here is a proof of concept that this approach would potentially help patients," said Mueller. "And for very young patients with actively growing livers that could potentially be treated early in life, this could be very meaningful."

###

Media Contact

Jim Fessenden
[email protected]
508-856-2688
@UMassMedical

http://www.umassmed.edu

https://www.umassmed.edu/news/news-archives/2017/10/new-gene-editing-approach-for-alpha-1-antitrypsin-deficiency-shows-promise-in-umms-study/

Share12Tweet7Share2ShareShareShare1

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electrodynamics at Photonic Temporal Interfaces Unveiled

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

Spotting Neonatal Peripheral Infusion Issues Early

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.