• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NIFA biotechnology grants put science at center of food safety policy

Bioengineer by Bioengineer
October 19, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, D.C., Oct. 19, 2017 – The science of agriculture grows more complex every year. Today, the U.S. Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) announced support for projects to help bridge the gap between biotechnology innovations and the policies on how to use them. These grants are funded through NIFA's Biotechnology Risk Assessment Research Grants (BRAG) Program.

"Biotechnology offers innovative tools to address the problem of ensuring a safe, nutritious food supply," said NIFA Director Sonny Ramaswamy. "It is imperative that we help policymakers understand these tools and base their policy decisions on high-quality science and evidence."

Established in 1992, the Biotechnology Risk Assessment Research Grant (BRAG) program supports research to help evaluate hazard potential and other effects of genetically engineered (GE) organisms. The program also supports conferences that bring together scientists, regulators, and other stakeholders to discuss topics related to biotechnology and assessments of risk. Projects are supported in several program areas including: management practices to minimize environmental risk of GE organisms; methods to monitor, and understand the dispersal of GE organisms; gene transfer to domesticated and wild relatives; and environmental impacts of genetic engineering in agricultural production systems.

Among projects funded in Fiscal Year 2017, Cornell University researchers will investigate whether genetically engineered probiotics – often used as alternatives to antibiotics – may spread from an animal's microbiome into their environment. Oregon State University researchers will conduct greenhouse and field tests of CRISPR gene-edited poplar and eucalyptus trees to evaluate the ecological concerns that may pose barriers to their commercial adoption.

In all, 13 grants totaling nearly $5.4 million are being awarded through the BRAG program. They are:

Infinite Eversole Strategic Drop Services, Jonesboro, Arkansas, $25,000
University of California, Davis, California, $500,000
University of California, Davis, California, $25,000
USDA-ARS, Western Regional Research Center, Albany, California, $500,000
Purdue University, West Lafayette, Indiana, $500,000
University of Kentucky, Lexington, Kentucky, $500,000
Washington University, St. Louis, Missouri, $469,277
University of Nebraska, Lincoln, Nebraska, $499,998
Cornell University, Ithaca, New York, $500,000
Boyce Thompson Institute for Plant Research, Ithaca, New York, $380,830
Oregon State University, Corvallis, Oregon, $500,000
Texas A&M University, College Station, Texas, $499,422
Texas A&M University, College Station, Texas, $496,361

More information on these grants can be found on the NIFA website.

Among previous BRAG projects, University of Tennessee researchers measured armyworm resistance to corn and cotton crops bred to include an insecticidal bacteria that occurs naturally in soil. The research has resulted in new monitoring methods to help farmers detect, monitor, and predict the movement of these pests. Another project at North Carolina State University looked at ways to stop the northward spread of screwworm from South America. During the past century, the presence of screwworm cost the U.S. livestock industry an average of $20 million annually. As a result, the team developed and evaluated a sterile male screwworm strain to help manage the buffer zone along the Panama-Colombia border.

NIFA's mission is to invest in and advance agricultural research, education, and extension to solve societal challenges. NIFA's investments in transformative science directly support the long-term prosperity and global preeminence of U.S. agriculture. To learn more about NIFA's impact on agricultural sciences, visit http://www.nifa.usda.gov/Impacts, sign up for email updates or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts.

###

Media Contact

Selina Meiners
202-734-9376

http://nifa.usda.gov/

Share12Tweet7Share2ShareShareShare1

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin Combinations Show Promise in Lung Cancer

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

Creating Liquid Bio-Fertilizer from Citrus, Bananas, and Eggshells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.