• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Untangling vitamin D activation pathways in inflammation and bone health

Bioengineer by Bioengineer
October 16, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have identified a region of the genome that regulates vitamin D activation in the kidneys, opening the door for more sophisticated treatments of diseases, including bone and immune disorders, involving vitamin D. The results of this research will be published in the Oct. 20 issue of the Journal of Biological Chemistry.

Vitamin D is essential for building bones. Inactive vitamin D obtained from the diet or produced in the skin is converted to its active form, calcitriol, in the kidneys. Calcitriol can also be produced in other parts of the body, including skin cells and immune cells. In these non-kidney sites, calcitriol seems to serve an altogether different purpose: it appears to play no role in regulation of minerals, and its production is induced by inflammation rather than by the hormones that control calcitriol synthesis in the kidneys.

Understanding the function of non-kidney calcitriol production and its connection to inflammatory diseases, ranging from multiple sclerosis to arthritis, is of great interest to a number of biomedical researchers, who would like to know whether and how vitamin D could potentially be used to treat these diseases. However, research in this area has been impeded by the inability to separately study the pathways controlling kidney vs. non-kidney vitamin D activation. A group of researchers at the University of Wisconsin, overseen by J. Wesley Pike, have now overcome this hurdle by using CRISPR/Cas engineering to produce mice with kidney-specific control of vitamin D activation.

"Through the creation of these mice, we can turn off endocrine regulation of [calcitriol] production exclusively in the kidney," said Mark Meyer, the research associate who led the new study. "By doing so, we can focus further on the inflammatory regulation of [calcitriol]."

Calcitriol production is carried out by the enzyme CYP27B1, but the genomic regions that the team deleted in the experimental mice are far away from the gene encoding this enzyme. Rather, the researchers deleted what's known as enhancer regions for the Cyp27b1 gene. These regions of DNA bind to specific proteins controlled by the hormones involved in vitamin D regulation, causing the genomic DNA to rearrange in a way that enhances production of CYP27B1.

Importantly, deleting these regions affected the response of vitamin D activation to hormones, but not to inflammation-related molecules, indicating that these regions were key to allowing researchers to separately study the two types of calcitriol production.

While the long-term goal of the team is to understand the function of calcitriol in inflammatory diseases, identifying the kidney-specific enhancer region of the genome is already yielding insights into the mechanisms involved in bone disorders. Meyer described the work of a clinician collaborator who, in aiming to understand pediatric skeletal disorders, is examining his patients for mutations in the same enhancer regions identified in the mice.

"That [information] might be able to tell that particular clinician about which treatment course might be most appropriate for that individual," Meyer said. For example, many skeletal disorders are treated with calcium and vitamin D supplements, but patients with mutations in regions involved in vitamin D regulation might actually be harmed by calcium supplementation.

###

The work was funded by the department of biochemistry at the University of Wisconsin, Madison.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact

Sasha Mushegian
[email protected]
@asbmb

http://www.asbmb.org

http://dx.doi.org/10.1074/jbc.m117.806901

Share12Tweet7Share2ShareShareShare1

Related Posts

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

September 22, 2025
blank

Unveiling Toxocara canis Excretory-Secretory Products’ Impact

September 22, 2025

Oxaloacetate Sensing Boosts Innate Flu Defense

September 22, 2025

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SwRI Marks the Completion of Its Cutting-Edge High-Speed Propulsion Engine Research Facility

New Growth Switch Uncovered That Enhances Plant Adaptability

Molecular Pathway Connects Stomach Infection to Increased Cancer Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.