• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rainfall trends in arid regions buck commonly held climate change theories

Bioengineer by Bioengineer
October 12, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Colleen Gino

The recent intense hurricanes in the Atlantic have sharply focused attention on how climate change can exacerbate extreme weather events.

Scientific research suggests that global warming causes heavier rainfall because a hotter atmosphere can hold more moisture and warmer oceans evaporate faster feeding the atmosphere with more moisture.

However, this link between climate warming and heavy rainfall has only been examined in particular regions where moisture availability is relatively high.

Until now, no research has been undertaken that examines this relationship in dryland regions where short, sharp rainstorms are the dominant source of precipitation and where moisture availability on land is extremely limited.

To explore the links between climatic warming and rainfall in drylands, scientists from the Universities of Cardiff and Bristol analysed more than 50 years of detailed rainfall data (measured every minute) from a semi-arid drainage basin in south east Arizona exhibiting an upward trend in temperatures during that period.

The analysis demonstrated a decline in rainfall intensity, despite an increase in total rainfall over the years. Interestingly, the study shows that there is a long-term decline in heavy rainfall events (greater than 25 mm/h) and an associated increase in the number of smaller storms each delivering less rainfall.

This result is contrary to commonly held assumptions about rainfall trends under climate change.

Lead author, Dr Michael Singer from School of Earth and Ocean Sciences at Cardiff University, said: "In drylands, convective (or short, intense) rainfall controls water supply, flood risk and soil moisture but we have had little information on how atmospheric warming will affect the characteristics of such rainstorms, given the limited moisture in these areas."

Co-author, Dr Katerina Michaelides, from the School of Geographical Sciences and Cabot Institute at the University of Bristol, said: "Our findings are consistent with previous research in the Colorado Basin which has revealed a decline in runoff in the upper part of the Basin.

"Our work demonstrates that there is a more regional decline in water resources in this dryland region, which may be found in other dryland regions of the world."

Since trends in convective rainfall are not easily detected in daily rainfall records, or well-simulated by global or regional climate models, the researchers created a new tool to assess the effects of climate change on rainfall patterns and trends in dryland areas.

Their new model, STORM, simulates individual rainstorms and their expression over a river basin, and it can represent different classes of climate change over many decades.

Drs Singer and Michaelides employ STORM to show that the historical rainfall trends likely resulted in less runoff from this dryland basin, an effect they expect to have occurred at many similar basins in the region.

Dr Singer added: "We see this model as a useful tool to simulate climate change in regions and cases where traditional models and methods don't capture the trends."

###

Paper: 'Deciphering the expression of climate change within the Lower Colorado River basin by stochastic simulation of convective rainfall' by M. Bliss Singer and K. Michaelides in Environmental Research Letters

Media Contact

Shona East
[email protected]
44-117-928-8086
@BristolUni

http://www.bristol.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

Oxaloacetate Sensing Boosts Innate Flu Defense

Oxaloacetate Sensing Boosts Innate Flu Defense

September 22, 2025
Nasal Staph Affects Mice Mood by Hormone Breakdown

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025

Cold Stress Alters Morphology and Genes in Corn Roots

September 22, 2025

Breakthrough Discovery of a ‘Nearly Universal’ Pharmacological Chaperone for Rare Diseases

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bispecific Affitoxin Targets HPV, Enhances Cervical Cancer Therapy

Oxaloacetate Sensing Boosts Innate Flu Defense

Impact of Certified Lactation Consultants in US Clinics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.