• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UTA researcher earns grant to develop gas sensor to detect lung cancer from breath

Bioengineer by Bioengineer
October 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UT Arlington

Current methods of detecting lung cancer consist of imaging methods and invasive biopsies, which can be stressful and painful for patients. Yuze "Alice" Sun, an assistant professor in the Electrical Engineering Department at The University of Texas at Arlington, has received a $199,999 grant from the Cancer Prevention and Research Institute of Texas to develop a non-invasive means to detect early stage lung cancer through biomarkers in a patient's breath instead, saving the patient from needle biopsies and extended waits for a diagnosis.

Sun plans to develop an optofluidic gas-analyzing microsystem to separate and profile chemical compounds in human exhaled breath, then search for those that may indicate lung cancer. The new technology may eventually offer a noninvasive way for doctors to screen patients for lung cancer at an early stage, when the treatment is the most effective.

"The key component is determining how to process and distinguish the thousands of chemicals in the breath. Some are biomarkers for lung cancer, but they are in very low concentrations and are difficult to detect," Sun said.

"This grant will allow me to develop a sensing technology and prototype a device to look at human exhaled breath and determine with high confidence if there is a correlation between these biomarkers and the presence of lung cancer. If I am successful, the next step would be to collaborate with doctors to fully develop a device that could be used in clinics."

CPRIT grants reward high-risk, high-impact research that can result in major breakthroughs in detecting and treating cancer.

Sun's research is an example of innovative thinking in the area of health and the human condition, a theme in UTA's Strategic Plan 2020: Bold Solutions | Global Impact, said Jonathan Bredow, chair of the Department of Electrical Engineering.

"This grant is exciting because of the potential discoveries that could result from it. Dr. Sun has devoted a lot of time and energy to finding ways to detect cancer earlier, faster and in ways that keep patients comfort at the forefront. Her work is expanding the boundaries of photonics applications in healthcare," Bredow said.

###

Sun earned a National Science Foundation Faculty Early Career Development, or CAREER, Award in 2016 to develop an optofluidic laser to detect biomarkers for cancer diagnosis and possibly other genetic disorders at the molecular and cellular level. She is also the principal investigator on another NSF grant to study gas separation and sensing with integrated nanophotonics and nanofluidics.

Media Contact

Herb Booth
[email protected]
817-272-7075
@utarlington

http://www.uta.edu

Original Source

http://www.uta.edu/news/releases/2017/10/Sun-CPRIT-breath-cancer.php

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.