• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of peripheral neuropathy cause suggests potential preventive measures

Bioengineer by Bioengineer
October 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In discovering how certain chemotherapy drugs cause the nerve damage known as peripheral neuropathy, researchers at Dana-Farber Cancer Institute have found a potential approach to preventing this common and troublesome side effect of cancer treatment.

The symptoms of peripheral neuropathy, which affects about one-third of patients receiving chemotherapy, include numbness, tingling, and pain in the hands and feet. Some patients get better after treatment ends, but in others the symptoms are long-lasting. There is currently no preventive or treatment for peripheral neuropathy, which is caused by the degeneration of the long, spindly nerve cell projections called axons that transmit physical sensations to the brain.

Unlike the brain, which is protected by a physical barrier from many harmful chemicals, nerve axons – which can extend as long as two or three feet in humans — are exposed to substances that flow through the blood circulation. The new report in the journal Neuron reveals for the first time precisely how taxanes, a class of commonly used chemotherapy drugs, trigger a dying off of sensory axons. With this knowledge, it might someday be possible, the investigators say, to give patients a drug prior to chemotherapy treatment that would reduce or prevent neuropathy symptoms. Taxane drugs are routinely used in treating early-stage breast cancer, and some other cancer types.

Researchers led by Rosalind Segal, MD, PhD, discovered that a protein called Bclw plays a unique braking role in preventing the degeneration of nerve axons. Bclw blocks the action of another protein that sets off a cascade of chemical reactions ending in nerve cell death. Segal says that Bclw is part of a regulatory system that allows unnecessary nerves to be "pruned" or killed off during embryonic development. During adult life, Bclw protects nerves from degeneration – except in the case of a traumatic injury or, in cancer treatment, exposure to chemotherapy drugs.

The gene carrying the blueprint for Bclw is located in the nucleus of the nerve cell. A carrier protein, SFPQ, transports copies of the Bclw blueprint in the form of messenger RNA along the nerve axon, where the protective Bclw protein is manufactured.

Segal and her colleagues found that adding a taxane drug, paclitaxel, to sensory nerve axons in the laboratory dramatically impeded the transport of Bclw messenger RNA by the SFPQ protein. As a result, too little of the Bclw protein was made to protect the axons, and they degenerated.

This finding led the investigators to ask if adding Bclw protein to the nerve axons before exposing them to paclitaxel would prevent the nerves from dying off — and it did. Moreover, they demonstrated that a synthetic compound based on a part of the Bclw protein – a so-called "stapled peptide" made in the laboratory of DFCI researcher Loren Walensky, MD, — was able to prevent degeneration from exposure to paclitaxel. This "designer peptide provides a promising template for drugs that can prevent chemotherapy-induced peripheral neuropathy," say the scientists.

Such drugs aren't likely to become available any time soon, but Segal says having discovered the mechanism that causes peripheral neuropathy in patients treated with taxane chemotherapy might be valuable in other ways. "One possibility is that you might be able to predict which patients will develop peripheral neuropathy based on whether they have higher or lower levels of Bclw based on their genetic background."

###

First authors of the study are Sarah E. Pease-Raissi, PhD, and Maria F. Pazyra-Murphy of Dana-Farber.

The research was supported by National Institutes of Health grants R01 NS050674 and R01 CA 205255 and by an award from the Barr Weaver program.

Media Contact

Ellen Berlin
[email protected]
617-632-4090
@DanaFarber

http://www.dfci.harvard.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists’ Mental Models Reveal Microplastics Insights

September 22, 2025
blank

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

September 22, 2025

Unlocking Brain Lipids: New Neurodegenerative Atlas

September 22, 2025

Bottom-Up Septal Circuit Controls Anticipatory Drinking

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists’ Mental Models Reveal Microplastics Insights

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

Unlocking Brain Lipids: New Neurodegenerative Atlas

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.