• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ketone nutritional supplements: Good or bad for athletic performance?

Bioengineer by Bioengineer
October 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UBC Okanagan

In the quest to improve physical performance, many athletes are turning to untested nutritional supplements. But in the case of one recently available and popular class of supplements–ketone salts–research from UBC's Okanagan campus suggests it may inhibit, rather than improve, athletic performance during high-intensity exercise.

"Ketone salts are relatively new to the market and there's not much research on their impact on performance," says the study's co-author Jonathan Little, assistant professor in UBC Okanagan's School of Health and Exercise Sciences. "We know from one previously published study that ketone supplements may improve long-duration endurance performance but we're interested what happens during short-duration and high-intensity workouts, like running a 10k or cycling up a hill."

"It turns out that ketone salt supplements actually impair high-intensity exercise performance."

Ketone salts work by artificially elevating blood ketone levels, similar to what happens naturally during periods of starvation, and forces the body to rely on burning fat as a fuel, explains Little. Burning fat is a more effective long-term fuel but is more complex to process and isn't as readily accessible for quick bursts of muscle activity as is a fuel like glucose.

"Elevated blood ketones seem to inhibit the body's use of glycogen, the stored form of glucose, and favours burning fat instead," adds Little. "That means that the body's quick-burning fuel cannot be accessed during high-intensity bursts of activity and athletic performance is dropping off as a result."

In his study, Little recruited ten healthy adult males with similar athletic abilities and body mass indices. After a period of fasting, they were asked to consume either beta-hydroxybutyrate ketone salts or a flavour-matched placebo, in a randomized order, and then engage in a cycling time trial. Power output on the day participants consumed ketone salts was seven per cent lower than on the day when they consumed the placebo.

"Often these supplements are marketed as a means of improving athletic performance but in this case, the research tells a very different story," says Little. "On top of that, the long-term impacts of artificially increasing blood ketone levels–essentially tricking the body into thinking it is in a state of starvation–is completely unknown."

"I hope this helps athletes navigate the science of supplements rather than relying on label marketing alone."

###

Little's research was recently published in Applied Physiology, Nutrition, and Metabolism and supported by a Natural Sciences and Engineering Council of Canada Engage Grant.

Media Contact

Nathan Skolski
[email protected]
250-807-9926

http://ok.ubc.ca/welcome.html

Share12Tweet7Share2ShareShareShare1

Related Posts

MeaB bZIP Factor Essential for Nitrosative Stress Response

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025
blank

Exploring Plastid Genome Traits in Saururaceae

October 5, 2025

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Revolutionizing Preterm Infant Care in Resource-Limited Settings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.