• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Imaging agents developed to better monitor growth of tumors

Bioengineer by Bioengineer
October 5, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Alberta

(Edmonton, AB) UAlberta researchers have created two new imaging agents that could help physicians visualize the formation of tumour-associated blood vessels, keep track of tumour growth and possibly generate new therapies.

"Blood vessel growth is critical to tumour growth," said John Lewis, the Alberta Cancer Foundation Frank and Carla Sojonky Chair in Prostate Cancer Research at the U of A and a member of the Cancer Research Institute of Northern Alberta (CRINA). "When a tumour starts growing, cells start to divide out of control and they lack an organized blood vessel network to feed them. When that happens, there are help signals that tell the surrounding blood vessels to branch off and supply the tumour with new blood vessels for oxygen and nutrients."

The process is called angiogenesis. There are a number of approved cancer drugs to prevent the formation of new tumour-related blood vessels, but according to Lewis, many haven't yet lived up to their promise due to wide variability among patients. He believes the newly created imaging agents, which can be used in PET scans and fluorescence imaging, could provide physicians helpful insight when determining the best course of action for their patients.

"These drugs can be toxic and expensive, but potentially life-saving for certain patients. An imaging agent could be used before treatment to see how many new blood vessels are forming to determine whether an individual patient is a candidate for treatments that will inhibit new blood vessel growth.' This would allow treatment to be personalized for those patients most likely to respond. Also, during the treatment, you could use the same imaging agent to monitor the response to the therapy."

In his research, Lewis, along with collaborators at Western University and Case Western Reserve University, worked with a protein, EGFL7, that is specific to actively growing blood vessels. Together they created new peptides that home into EGFL7 to test if they would be useful for imaging purposes.

"Once we had the peptide, we validated in two ways," said Lewis. "First we did some PET imaging of mice tumours and the peptide localized to those tumours and lit them up. We also created nanoparticles with the peptide and they were able to accumulate in the new blood vessels and light them up as well."

The imaging agents now need to be tested in a treatment setting. Lewis plans to begin that work in animal models before moving on to clinical work in humans. His aim is to provide new tools which will help doctors make better and quicker treatment decisions for their patients.

"Ideally we would get a measure of response 24 hours after we first give the drug," said Lewis, "Currently we measure any changes in tumour size up to a month after treatment, which is a long time to wait to find out if an expensive drug isn't working."

###

Lewis' research was recently published in Nanoscale. It was funded by Prostate Cancer Canada, the Ontario Institute for Cancer Research, National Institutes of Health and the Alberta Cancer Foundation.

Media Contact

Ross Neitz
[email protected]
780-492-5986
@ualberta_fomd

http://www.med.ualberta.ca

Related Journal Article

http://dx.doi.org/10.1039/C7NR02558K

Share12Tweet8Share2ShareShareShare2

Related Posts

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Key Drivers of Corporate Governance in Burundi’s Cooperatives

September 21, 2025
Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.