• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Improvement of the genetic decoding of neurodevelopmental disorders

Bioengineer by Bioengineer
October 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A result that will help in the future diagnosis of children with neurodevelopmental disorders, such as intellectual disability, autism or schizophrenia. A video illustrates this scientific analysis with medical applications.

A key question in biology is understanding how brain works. Its basic working units, the neurons, transmit information in the form of electrical impulses and chemical signals. Alterations in the function of the neurons can lead to neurological and psychiatric disorders. Neurodevelopmental disorders (NDDs) are a group of frequent and often severe pediatric conditions, that can manifest, for example, as intellectual disability, autism or early-onset psychiatric symptoms. The recent development of higher resolution genetic diagnostic tools (like having better telescopes in astronomy) has underlined the prevalence of genetic anomalies, such as copy number variations (for example, loss of a gene), in children with NDDs.

Two HUDERF patients with neurodevelopmental disorders (here cognitive and behavioral symptoms) showed partial loss (deletion) of the DLG2 gene, which plays an important role in the development, plasticity, and stability of synapses (the zone where two neurons touch each other allowing them to exchange information).

A research team led by Dr. Guillaume Smits, Nicolas Deconinck and Catheline Vilain of HUDERF and Professor Gianluca Bontempi of ULB (Machine Learning Group) collaborated through the Interuniversity Institute of Bioinformatics in Brussels, (IB) ², a joint research institute at the Université libre de Bruxelles (ULB) and the Vrije Universiteit Brussel (VUB). Together, they worked at integrating large genomic, epigenomic, transcriptomic and clinical datasets. The computational experiments, performed by Claudio Reggiani, a PhD student funded by the Belgian Kids' Fund for Pediatric Research and Innoviris, pinpointed two novel DLG2 promoters and coding exons conserved in human and mouse and present in the fetal brain. The deletion of these new regions were found statistically associated with developmental delay and intellectual disability in two independent patient cohorts, supporting the pathogenic role of these new elements into the neurodevelopmental symptoms of both HUDERF patients. The results of this work have been published in the international journal Genome Medicine and are presented in this video.

From a medical perspective, the findings will help medical doctors in improving future diagnosing of children with NDDs, intellectual disability, autism and schizophrenia. From a scientific point of view, this work shows how the in silico integration of multiple large datasets can bring knowledge about the genome. It also provides elegant progress into the molecular cause of neurodevelopmental disorders and improves fundamental knowledge about the DLG2 gene.

###

Genome Medicine: Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability.

Media Contact

Claudio Reggiani
[email protected]
32-265-03587

http://www.ulb.ac.be

http://dx.doi.org/10.1186/s13073-017-0452-y

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.