• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The vitamin ergothioneine: an antioxidant for oxygen-free areas?

Bioengineer by Bioengineer
October 4, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemists at the University of Basel have been able to show for the first time that anaerobic bacteria can produce the vitamin ergothioneine in the absence of oxygen. This suggests that bacteria were forming this compound even before there was oxygen in the Earth's atmosphere. The vitamin's function therefore remains a mystery, as it was previously ascribed a role in oxygen-dependent processes.

Ergothioneine is a sulfur-containing vitamin. Whereas bacteria and fungi can produce it themselves, higher organisms rely on absorbing it from food or from the ground.

It is suspected that ergothioneine plays an important physiological role in combating oxidative stress in cells. However, its precise role remains unclear. There are currently no known symptoms of its deficiency, which explains why the vitamin has long been overlooked.

To gain a better understanding of its function, the group led by Professor Florian Seebeck at the University of Basel's Department of Chemistry is researching the sequence of chemical reactions by which bacteria produce the vitamin.

Scientists have long been aware of an oxygen-dependent reaction pathway in which a key step is the formation of a carbon-sulfur bond using oxygen from the air. Until now, however, studies had only focused on aerobic organisms, which require oxygen in order for their metabolism to operate.

It also works without oxygen

The Basel chemists have now studied the green sulfur bacterium Chlorobium limicola, which also produces ergothioneine. C. limicola belongs to the group of strictly anaerobic bacteria and is therefore reliant on an oxygen-free environment.

In the process, the researchers discovered a new type of biosynthetic pathway in anaerobic bacteria whereby the carbon-sulfur bond is formed without oxygen, as they report in the journal Angewandte Chemie.

Is ergothioneine an ancient molecule?

A comparison of the enzyme sequences of the oxygen-dependent and -independent biosynthetic pathways suggests that, from an evolutionary perspective, the two pathways separated from one another at an early stage of Earth's history. Ergothioneine may have been formed as early as around 3 billion years ago – that is, at a time when there was no oxygen at all in Earth's atmosphere.

This casts a different light on the importance of its physiological role in combating oxidative stress (that is, in reactive oxygen compounds), and the findings suggest that ergothioneines are also important for anaerobic life.

"Our results open up new prospects for studying the physiological function of ergothioneine in humans and in human pathogens, as well as for clarifying the cellular processes that it is involved in. In the long term, this may lead to potential starting points for the development of new therapies," says Florian Seebeck.

###

Media Contact

Cornelia Niggli
[email protected]
@UniBasel_en

http://www.unibas.ch/

https://www.unibas.ch/en/News-Events/News/Uni-Research/The-Vitamin-Ergothioneine-An-Antioxidant-for-Oxygen-Free-Areas.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201705932

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.