• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ammonia emissions unlikely to be causing extreme China haze

Bioengineer by Bioengineer
October 3, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Georgia Tech

As China struggles to find ways to remedy the noxious haze that lingers over Beijing and other cities in the winter, researchers from Georgia Institute of Technology have cast serious doubt on one proposed cause: high levels of ammonia in the air.

The wintertime air pollution has gained attention in the scientific community in recent years, prompting some scientists to propose that ammonia, emitted into the air from agricultural activities and automobiles, could be a precursor that strongly promotes the formation of the haze.

Georgia Tech researchers countered that theory in a study published September 21 in the journal Scientific Reports. The study was sponsored by the National Science Foundation.

"With China and other countries exploring ways to reduce air pollution, it's important to understand the chemistry behind how that haze forms," said Rodney Weber, a professor in Georgia Tech's School of Earth & Atmospheric Sciences. "What we've found is that the atmospheric ammonia is not a large driver of those air conditions, as has been proposed."

The researchers used advanced computer modeling to examine the chemistry of how sulfur dioxide and nitrogen oxide – two gases pumped into the atmosphere from coal-burning power plants and other fossil fuel combustion – interact to form sulfate aerosol, one major cause of the haze that can wreak havoc on human and ecosystem health.

"Typically, sulfate aerosol is produced through a chemical reaction that oxidizes sulfur dioxide to form sulfate particulates," said Athanasios Nenes, a professor and Johnson Faculty Fellow in the School of Earth & Atmospheric Sciences and the School of Chemical & Biomolecular Engineering. "In that process, water is absorbed by the sulfate as it is produced and tends to make the particle very acidic, which shuts down certain pathways for further sulfate formation."

Some scientists have recently suggested that Beijing's high levels of ammonia – which is a base, or on opposite side of the acidity scale – could subvert the normal sulfate process, keeping the particle neutral long enough to form much higher concentrations of sulfate through a new chemical pathway.

The researchers at Georgia Tech tested that theory with a computer model that performed a thermodynamic simulation of the aerosol conditions over cities in the East China Plains. The researchers tested numerous atmospheric scenarios by altering the mix of aerosols, gases and meteorological conditions several ways. Consistently, the model showed that elevated ammonia had relatively little impact on the acidity of the pollutant particles. Even a 10-fold increase in ammonia above normal conditions made the aerosol only a tiny amount – only one pH unit – less acidic. The effect was also true in the reverse; lowering ammonia 10-fold made the air only slightly more acidic. The researchers concluded that particles remain too acidic, even for the very high levels of ammonia in Beijing, for sulfate haze to be formed through the proposed new pathway.

"If ammonia played a big role in the production of sulfate, efforts to control it could have wide-ranging implications, such as considering limiting agricultural activities to improve air pollution of this kind," Weber said. "But, we show that this is likely to be largely ineffective, in this case."

The researchers found that the mildly acidic air over Beijing could promote high rates of sulfur dioxide oxidation through interaction with transition metals such as iron, copper and manganese emitted into the air from local sources such as car brakes, fly ash and mineral dust, which could be another important contributor to extreme pollution events and a source of intense particle toxicity.

Other researchers at Georgia Tech have attributed the extreme haze in China in recent years to changing weather patterns as a result of climate change.

"Controlling ammonia emissions overall seems to be the proposed strategy for mitigating air quality problems in many regions of the globe, but our work shows that it is not necessarily the most cost effective way to go," Nenes said. "You certainly don't want to ignore ammonia emissions, but there can be other ways to get the biggest bang for the buck in terms of air quality improvement, such as limiting sulfur dioxide and nitrogen oxide emissions from coal burning power plants."

###

This material is based upon work supported by the National Science Foundation under Grant No. AGS-1360730. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

CITATION: Hongyu Guo, Rodney J. Weber and Athanasios Nenes, "High levels of ammonia do not raise fine particle pH sufficiently to yield nitrogen oxide-dominated sulfate production," (Scientific Reports, September 2017). http://dx.doi.org/10.1038/s41598-017-11704-0

Media Contact

Josh Brown
[email protected]
404-385-0500
@GeorgiaTech

http://www.gatech.edu

Original Source

http://www.rh.gatech.edu/news/596892/ammonia-emissions-unlikely-be-causing-extreme-china-haze http://dx.doi.org/10.1038/s41598-017-11704-0

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Haplotype Analysis Links Regulatory Variants to Citrus Traits

October 31, 2025
Meerkats Gain Health Benefits Through Group Membership

Meerkats Gain Health Benefits Through Group Membership

October 30, 2025

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

October 30, 2025

Decoding the Painted Lady Butterfly’s Mitochondrial Genome

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mid-Adolescence Boosts Autistic Individuals’ Induction Skills

Revolutionary Methane Dry Reforming at Low Temperatures Using Oxygen-Vacancy-Enriched MgO/Ni@NiAlO Catalyst

Time Pressure Impact on Finnish Home Care Nurses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.