• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists create endocytosis on demand by ‘hotwiring’ cells

Bioengineer by Bioengineer
September 28, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gabrielle Larocque

  • Scientists develop method to create endocytosis on demand
  • System using a chemical and light likened to 'hotwiring' a car
  • Discovery could be used to 'feed' cells with drugs or nanoparticles

A solution to the problem of creating endocytosis on demand is being compared to 'hotwiring' a car.

A team at Warwick Medical School, University of Warwick, has managed to trigger clathrin-mediated endocytosis in the lab. They did it by using a chemical rapamycin which diffuses in to the cell allowing them to trigger endocytosis to occur all over the cell. Their study New Tools for 'Hot-Wiring' Clathrin-Mediated Endocytosis with Temporal and Spatial Precision has just been published in The Journal of Cell Biology.

Endocytosis is very important to the cell, for example it allows cells to import nutrients to live and controls cell movements, growth and how cells 'talk' to one another. Cell biologists have studied for decades how endocytosis works however up till now they have found it impossible to control the process.

The team was led by Dr Stephen Royle reader and senior Cancer Research UK fellow at Warwick Medical School said: "We've compared our method to 'hot-wiring' a car. When this happens in the movies, a bad guy breaks into a car and just twists some wires together to start the car and make a getaway.

"To trigger endocytosis we used the cell's own proteins, but we modified them. We chopped out all the unnecessary parts and just left the bare essentials. We call the process of triggering endocytosis 'hot-wiring' because it is similar to just twisting the wires together rather than having a key.

"It turns out that movies are not like real life, and hot-wiring a car is actually quite difficult and takes a while. So our systems are more like the Hollywood version than real life!"

The team also solved the problem of knowing where endocytosis will happen on the cell. This was done by engineering a light-sensitive version of their system. With this new version they used blue light to trigger endocytosis. Whereas the chemical across the cell the light can be focused in a narrow region causing endocytosis to be triggered only in that region. This allows the team to control where, as well as when, a vesicle that carries nutrients will form.

The new method will allow cell biologists to accurately study the timing of endocytosis and what proteins are required. It also potentially means that molecules can be delivered to cells that they cannot normally enter. Eventually scientists may be able to 'force feed' cells with whatever they want, such as drugs or nanoparticles that are not actively taken up by cells.

###

Photocaption: endocytic vesicles made by 'hot-wiring'
Credit: Gabrielle Larocque
Image taken in Stephen Royle's lab (The pinky-purple spots are the endocytic vesicles made by hot-wiring process)

For further details contact Nicola Jones, Media Relations Manager University of Warwick 07920531221 or 02476574255 [email protected] or Tom Frew 07785 433155 or [email protected]

Notes to Editors

New Tools for 'Hot-Wiring' Clathrin-Mediated Endocytosis with Temporal and Spatial Precision
The Journal of Cell Biology, http://jcb.rupress.org/content/early/2017/09/26/jcb.201702188

Authors

Laura A. Wood: Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick
Gabrielle Larocque: Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick
Nicholas I. Clarke: Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick
Sourav Sarkar: Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick
Stephen J. Royle: Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick

Laura Wood was funded by the Medical Research Council Doctoral Training Partnership grant

Media Contact

Nicola Jones
[email protected]
07-920-531-221
@warwicknewsroom

http://www.warwick.ac.uk

Original Source

https://www2.warwick.ac.uk/newsandevents/pressreleases/scientists_create_endocytosis

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocortisone Use in Extremely Preterm Infants

Standardized Extract Boosts Immunity in Chemotherapy Mice

Reticulocalbin-1: Biomarker and Therapy Target in RCC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.