• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Role of microorganisms in the formation of unique iron ore caves

Bioengineer by Bioengineer
September 25, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The University of Akron

The National Science Foundation (NSF) has awarded $400,00 to three researchers in the Department of Biology and Geoscience at The University of Akron (UA) to continue their groundbreaking research on cave formation. The scientists are studying communities of microorganisms and their role in the formation of unique iron ore caves, which make up only about one percent of caves worldwide.

A majority of caves are found in limestone rock. They are formed by water flowing through the ground which erodes limestone deposits, leaving behind a series of tunnels and caverns. However, banded iron formations, or BIF, are rocks formed from iron deposits in ancient oceans. These iron-rich rocks are extremely resistant to the type of erosion that forms most caves, with surfaces that can be more than a billion years old. Yet, somehow, the BIFs in Brazil contain thousands of caves.

Preliminary research by the team at UA shows these BIF caves have high populations of active microbial communities. The researchers theorize that the microbes use iron within the rock to respire, in a similar way that humans use oxygen. This respiration causes the rust-like iron oxides that make up the cave to become soluble. This theory is supported by the discovery of dissolved iron in water within the cave, as well as evidence that the iron is dissolving behind the walls, causing the cave to collapse in on itself. The team now believes the flow of groundwater simply carries off the iron oxides after microbes do all the work of chewing through the BIF. Over time, this process could be responsible for the voids in the walls of the cave, which eventually meet to form a new cave that is large enough to be entered by humans.

"The identification of cave forming processes in BIF is significant as it dramatically expands the environments in which caves can form," states Dr. Hazel Barton, director of the integrated bioscience program at UA. "These caves provide critical subterranean habitats for many rare and endangered animal species. There is also a strong correlation between the location of these BIF caves and the presence of iron ores of global economic significance, providing the source material for the production of steel."

The team has been studying the caves in Brazil over the course of the last seven years. With continued funding from the NSF, Barton and her associates from UA, Dr. John Senko and Dr. Ira Sasowsky, will again take a group of students to Brazil to study the BIF caves firsthand. There, they will continue to test the hypothesis that the activities of microorganisms are responsible for the formation of BIF caves.

They will test their hypothesis both in the field and in a lab, and models will be used to show how iron is oxidized and swept away. The data gathered will show potential cave forming processes across a range of scales, from microscopic to regional, and will help to determine the role that microbes play in iron cave development.

###

Media Contact

Lisa Craig
[email protected]
330-972-7429
@UAkronNews

http://www.uakron.edu/

Original Source

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1645180&HistoricalAwards=false

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.