• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Creating brain cells to detect Tourette’s

Bioengineer by Bioengineer
September 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at Rutgers University-New Brunswick used a genetic engineering technique for the first time to create brain cells from the blood cells of individuals in a three-generation family with Tourette syndrome to help determine what causes the disease.

"This is so important to the future research of Tourette's and other neuropsychiatric disorders because before this technique was discovered we were unable to study brain-type nerve cells of living patients," said Jay Tischfield, senior author of the study published in Molecular Psychology and MacMillan Distinguished Professor of Genetics. "I think this technique will give us a better understanding of what sorts of genes cause this disease. Also, these cells could be used to screen drugs that might be effective for treatment."

While the technique – which led to a Nobel Prize in 2012 for the Japanese and British scientists who discovered it — has been used to investigate the genetic link of other psychiatric or neurological diseases like schizophrenia and Lou Gehrig's disease, this is the first time the procedure was used in researching a cause of Tourette syndrome, which has no precise treatment and cannot yet be diagnosed by genetic testing.

Tischfield, and doctoral student Nawei Sun, and their colleagues, converted blood cells of members of the same family, those who had Tourette's and those who did not, into induced pluripotent stem cells, or iPS cells, which were then converted into brain nerve cells. Pluripotent stem cells are capable of maturing into any type of adult cell – from a heart muscle cell to a nerve cell – and offer scientists an opportunity to study inherited diseases in the tissues that are most affected.

Through sequencing all of the protein encoding DNA in many members of this large family, the Rutgers group concluded that the observed Tourette disorder and obsessive compulsive disorder was likely due to a mutation in the PNKD gene that was present in family members that were diagnosed with the disorders.

Scientists found that the brain-specific form of the PNKD protein was present at lower levels in those with Tourette's due to the mutation and believe, while it might not be the case in most people with Tourette syndrome, it is the cause for this particular family. More research needs to be done to determine how such a mutation could cause these disorders, Tischfield said.

"What we were able to show is the malfunction of the gene and how disrupting it could cause Tourette's," said Tischfield. "As we move forward, we may find other families with this same genetic mutation."

Tourette syndrome – a disorder characterized by both vocal and body tics – is linked to problems in the basal ganglia, the part of the brain responsible for voluntary motor control, procedural learning and eye movement, as well as cognitive and emotional function. It is characterized by grimacing, eye blinking and shoulder shrugging and often accompanied by co-occurring conditions, such as depression, obsessive-compulsive disorder (OCD) or attention-deficit hyperactivity disorder (ADHD).

In the United States one out of every 100 – 150 people exhibit Tourette syndrome, with males affected three to five times more often than females. Scientists at Rutgers and others involved with them on this research estimate that there are approximately 400 genes in which a mutation could increase risk for Tourette disorder.

Rutgers, home to the NJ Center for Tourette Syndrome (NJCTS) Cell & DNA Sharing Repository, in collaboration with the National Institute of Mental Health Repository and Genomics Resource, makes genetic material and cells available to researchers around the world investigating Tourette disorder.

###

Media Contact

Robin Lally
[email protected]
848-932-0557
@RutgersU

http://www.rutgers.edu

http://news.rutgers.edu/research-news/creating-brain-cells-detect-tourettes/20170924#.WckWHLJ96Uk

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Superinfection Drives Defective HIV-1 Diversity, Replication

October 3, 2025

Iridoid Cyclase Discovery Completes Asterid Pathway

October 3, 2025

Genome Sequencing Uncovers Population Divergence in Yaks

October 3, 2025

AI Uncovers Antimicrobial Peptides Fighting Superbugs

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Superinfection Drives Defective HIV-1 Diversity, Replication

Muscle miR-126 Controls TDP-43, NMJ Health in ALS

Interpretable ML Boosts Plasma Catalysis for Hydrogen

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.