• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Drug combination may improve impact of immunotherapy in head and neck cancer

Bioengineer by Bioengineer
September 21, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers may have found a way to double down on immunotherapy's effectiveness.

In a paper published in the journal JCI Insights on September 21, researchers report that a combination of toll-like receptors (TLR) agonists — specialized proteins that initiate immune response to foreign pathogens or, in this case, cancer cells — and other immunotherapies injected directly into a tumor suppresses tumor growth throughout the whole body.

"The mechanism reverses the phenotype of a tumor by changing its inherit properties to make the tumor more immunogenic," said Ezra E.W. Cohen, MD, professor of medicine at UC San Diego School of Medicine and associate director for translational science at UC San Diego Moores Cancer Center and senior author on the paper. "In this study, the combination of immunotherapy drugs resulted in the complete elimination of cancer cells and even when re-challenged the tumors did not recur."

Macrophages are specialized immune cells that destroy targeted cells. They are supposed to present antigens to the immune system to get it started, but in cancer they stop doing that so the immune system is unable to recognize the cancer. The combination of drugs restored the ability of macrophages to initiate a tumor response and allow the immune system to eliminate the cancer.

To improve the efficiency of checkpoint inhibitor immunotherapy on human papillomavirus-negative and HPV-positive head and neck cancers, the team of researchers combined synthetic TLR7 and TLR9 that were developed by Dennis Carson, MD, Professor Emeritus at UC San Diego School of Medicine, with an inhibitor of the protein called programmed death-1 receptor (PD-1) which is responsible for turning off T cells.

TLR agonists cause an innate immune response — that is, the rapid response to a foreign substance in the body. This immediate protection comes at a cost since the nonspecific immune response may harm healthy cells if activation of the immune systems persists. PD-1 inhibitors stimulate an adaptive response calling on B cells and T cells to respond to a specific target, but this process takes longer to go into effect.

In mouse models, the combined TLR agonists and PD-1 inhibitors injected directly into a tumor incited a tumor-specific response by T cells which prevented metastasis or the spread of the cancer. When cancer had already spread, the TLR and anti-PD-1 combo eliminated the primary tumor as well as distant tumors. The combination therapy was more effective than either agent alone.

The next step should be to study these drugs in a clinical setting for head and neck cancer using FDA-approved immunotherapy. In addition, Cohen suggests studying these agents with other combinations such as chemotherapy and radiation therapy.

"As we make the tumor more immunogenic we should be making other therapies more effective and eliminate the cancer completely," said Cohen.

###

Co-authors include: Fumi Sato-Kaneko, Shiyin Yao, Alast Ahmadi, Shannon S. Zhang, Tadashi Hosoya, Megan M. Kaneda, Judith A. Varner, Minya Pu, Karen S. Messer, and Tomoko Hayashi, UC San Diego; Cristiana Guiducci, and Robert L. Coffman, Dynavax Technologies Corporation; Kazutaka Kitaura, Takaji Matsutani, and Ryuji Suzuki, Repertoire Genesis Inc.

Media Contact

Yadira Galindo
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Related Journal Article

http://dx.doi.org/10.1172/jci.insight93397

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    41 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Advances MRI Diagnosis of Brucella

Iberian Horse Genomes Trace Post-Ice Age History

Predicting Lung Infections After Brain Hemorrhage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.