• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Poliovirus therapy induces immune responses against cancer

Bioengineer by Bioengineer
September 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Duke Health

DURHAM, N.C. – An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells to evade the immune system.

Describing this process in a paper published Sept. 20 in the journal Science Translational Medicine, Duke Cancer Institute researchers provide the first published insight into the workings of a therapy that has shown promise in early clinical trials in patients with recurrent glioblastoma, a lethal form of brain cancer. The modified poliovirus received a breakthrough therapy designation from the Food and Drug Administration last year, expediting research.

"We have had a general understanding of how the modified poliovirus works, but not the mechanistic details at this level," said co-senior author Matthias Gromeier, M.D., a professor in the Duke Department of Neurosurgery who developed the therapy. "This is hugely important to us. Knowing the steps that occur to generate an immune response will enable us to rationally decide whether and what other therapies make sense in combination with poliovirus to improve patient survival."

Gromeier, with expertise in cancer biology, collaborated with fellow Duke researcher and co-senior author Smita Nair, Ph.D., an immunologist and professor in the Department of Surgery. The research team elucidated how the poliovirus works not only to attack cancer cells directly, but also to trigger a longer-lasting immune response that appears to inhibit regrowth of the tumor.

Using human melanoma and breast cancer cell lines, and then validating the findings in mouse models, the researchers found that the modified poliovirus therapy starts by attaching to malignant cells, which have an abundance of CD155 protein. The CD155 protein is otherwise known as the poliovirus receptor. The modified virus then begins to attack the tumor cells, directly killing many, but not all. This releases tumor antigens.

The second phase of assault is more complicated. By killing the cancer cells, the modified poliovirus triggers an alarm within the immune system, alerting the body's defenses to go on the attack.

This appears to occur when the modified poliovirus infects dendritic cells and macrophages. Dendritic cells then present tumor to T cells to launch an immune response. Once the immune system is activated against the poliovirus-infected tumor, the cancer cells can no longer hide and they remain vulnerable to ongoing immune attack.

"Not only is poliovirus killing tumor cells, it is also infecting the antigen-presenting cells, which allows them to function in such a way that they can now raise a T-cell response that can recognize and infiltrate a tumor," Nair said. "This is an encouraging finding, because it means the poliovirus stimulates an innate inflammatory response."

Nair and Gromeier said further studies will focus on the additional immune activity following exposure to the modified virus.

###

In addition to Gromeier and Nair, study authors include Michael C. Brown, Eda K. Holl, David Boczkowski, Elena Dobrikova, Mubeen Mosaheb, Vidya Chandramohan and Darell D. Bigner.

The study received support the Public Health Services (CA197264, CA124756 and CA190991), the Department of Defense, (W81XWH-16-1-0354); the Lefkofsky Family Foundation, Hope & Gavin Wolfe, and the BLAST Glioblastoma Foundation.

Nair and Gromeier, along with Brown, Chandramohan and Bigner, own intellectual property related to this research, which has been licensed to a company, Istari Oncology, Inc. Gromeier and Bigner are cofounders and equity holders in the company.

Media Contact

Sarah Avery
[email protected]
919-660-1306
@DukeHealth

http://www.dukehealthnews.org

Share13Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.