• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plant physiology: Adjusting to fluctuating temperatures

Bioengineer by Bioengineer
September 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Later leaf emergence, earlier leaf loss: A new study of Ludwig-Maximilians-Universitaet (LMU) in Munich shows that the average vegetation periods of trees and shrubs in North America are intrinsically three weeks shorter than those of comparable species in Europe and Asia.

The duration of the vegetation period – i.e. the time that elapses between leafing out (the emergence of the first leaf) in spring and the initiation of leaf loss in autumn — is a highly significant ecological parameter that has a considerable influence on both plant productivity and the biogeochemical cycling of vital nutrients in ecosystems. However, the mechanisms that determine the length of the vegetation period for any given species are poorly understood. Hence, in order to assess the potential impact of global climate change on plant productivity, for instance, more information on the timing of the growing seasons of a wide range of plant species is required. In a large-scale study, LMU botany professor Susanne Renner and her colleague Constantin Zohner have now measured this parameter for a large sample of woody plant species from the Northern hemisphere. Their findings, which have now been published in the journal Nature Ecology and Evolution, reveal significant differences between species that are native to North America on the one hand, and European and East Asian trees and shrubs on the other.

Susanne Renner is also Director of Munich's Botanic Garden, which has in cultivation some 19,000 species and subspecies of plants from all over the world. For their new study, Renner and Zohner selected 396 species of woody plants grown permanently outdoors and determined the lengths of their respective vegetation periods under ambient conditions. "In addition to carrying out phenological monitoring, we experimentally determined the timing of chlorophyll degradation in the leaves, which signals the beginning of the senescence process," Zohner explains.

Strikingly, the experimental data revealed that in North American species, the degradation of chlorophyll begins, on average, 9 days earlier than in the European speciees and 11 days earlier than in the Eastern Asian species. Conversely, when they ascertained the dates of leaf emergence, they found that leafing out in North American plants was markedly delayed relative to the European and Asian woody plants in their experimental sample. The overall effect of these disparities is that native North American species have a vegetation period that is approximately 3 weeks shorter than that of any other species, all grown under the same experimental conditions. Renner and Zohner postulate that this intrinsic difference reflects the fact that the interannual range of temperatures on the North American continent is greater than that encountered in either Europe or Asia. This factor should favor the adoption of a more conservative growth strategy, which would be expected to minimize the risk of exposure to cold at both ends of the growing season.

Of the 396 species selected for the study, 110 European and Asian species have established in North America, but have retained the longer growth periods characteristic of their ancestral habitats. It was thought that this trait might give such species an advantage over native trees and shrubs. Indeed, approximately half of these introduced species are classified as invasive, as they continue to extend their geographical range in their new home. So the Munich researchers investigated whether the innately longer growing seasons of introduced species might favor their dispersal in North America.

"We therefore asked whether or not invasive and non-invasive introduced species differ with respect to the duration of their vegetation periods," Renner says, "and found that they do not. So the length of the growing season alone is a poor indicator of the ability of a species to colonize new habitats. At all events, because of their intrinsically longer growth periods, these non-native species will have an impact on plant productivity and the CO2 balance of North American forests."

###

Media Contact

Luise Dirscherl
[email protected]
0049-892-180-3423

http://www.uni-muenchen.de

http://www.en.uni-muenchen.de/news/newsarchiv/2017/renner_leafemergence.html

Related Journal Article

http://dx.doi.org/10.1038/s41559-017-0307-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Marine Bathyarchaeia Convert Carbon into Unique Lipids

Marine Bathyarchaeia Convert Carbon into Unique Lipids

September 19, 2025
Broad-Range Phages Thrive Across Diverse Ecosystems

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum Scars Enhance Electron Transport, Paving the Way for Advanced Microchip Development

Breakthrough High-Sensitivity Omnidirectional Strain Sensor Developed Using Two-Dimensional Materials

Eating More Legumes and Less Red and Processed Meat Could Significantly Boost Men’s Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.