• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An important process fueling harmful algal blooms investigated in Canadian water bodies

Bioengineer by Bioengineer
September 13, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For many Canadians, summer time means time at the lake, swimming, fishing, boating, and relaxing. Nothing can spoil this experience like blue-green mats of muck, caused by algal blooms. These blooms negatively affect not only recreational activities but also put drinking water source, property values, wildlife, and human health at risk. In the 1970s, scientists discovered that the nutrient phosphorus caused algal blooms, which led to new regulations and improved sewage treatment. Nevertheless, blooms continue to plague many Canadian lakes. To investigate what might be happening, scientists looked to see whether phosphorus might be recirculating from the mud at the bottom of lakes back into the water.

In a new scientific study published today, scientists investigated an important, but poorly understood, process in Canada's aquatic ecosystems: the recycling of the algal nutrient, phosphorus, between mud at the bottom of lakes and the overlying water. This process can contribute to the formation of the harmful algal blooms that plague many lakes. Across the country tens or even hundreds of millions of dollars are invested every year to manage nutrient pollution but in some lakes legacy effects from nutrients deposited years ago can linger and delay recovery.

"Our main goal was to better understand where, when, and why this process occurs in Canadian fresh waters so that we can make improvements to how algal blooms are managed and develop realistic goals for lake restoration," explained lead author Diane Orihel, an assistant professor at Queen's University. She added, "we need to stop dumping phosphorus into our lakes, because it's not only causing problems right now, but in many lakes, it continues to deteriorate water quality for our children and grandchildren."

Jason Venkiteswaran, an assistant professor at Wilfrid Laurier University pointed out that "We rely on phosphorus to fertilize our soils and produce the food the world needs. However, we don't know how long that phosphorus sticks around in our lakes after we allow it to wash off the land and down our drains. Our work here cautions that we should have different expectations for the recovery of different types of lakes across the country."

By critically reviewing data from 70 water bodies, the authors found that phosphorus release from sediments is a common phenomenon in Canadian fresh waters, but that rates of this process varied dramatically from lake to lake. "The highest rates of release were found in small prairie lakes in Manitoba, Saskatchewan, and Alberta, while the lowest rates were found in Canadian Shield lakes in Ontario and the Maritimes," said Nora Casson, assistant professor at the University of Winnipeg.

The authors of this study also identified the key factors controlling this process, such as oxygen, pH, geology and lake nutrient status–which often acts against the best efforts of lake managers–as well as identified areas where we know strikingly little. Helen Baulch, assistant professor at the University of Saskatchewan noted that "There's a lot more we need to know about internal phosphorus loading, such as if this process is important in the thousands of reservoirs of our country, and we have huge data gaps for this process in our northern lakes that are undergoing rapid change."

Featured in this article were case studies of Lake Simcoe, Lake Winnipeg, Lake of the Woods, Lake Erie, Lake Champlain, Cootes Paradise, and Lake Diefenbaker.

The journal article, "Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis" by Diane Orihel (Queen's University), Helen Baulch (University of Saskatchewan), Nora Casson (University of Winnipeg), Rebecca North (University of Missouri), Chris Parsons (University of Waterloo), Dalila Seckar (Queen's University), and Jason Venkiteswaran (Wilfrid Laurier University) was published online today in the Canadian Journal of Fisheries and Aquatic Sciences. This article was selected by the journal as an "Editors' Choice" paper for 2017, which highlights articles of particularly high caliber and topical importance.

###

Citation

Please cite Canadian Journal of Fisheries and Aquatic Sciences and include a hyperlink to the research study: dx.doi.org/10.1139/cjfas-2016-0500.

Media Contact

Dave Rideout, Communications Officer, Media Relations
Queen's University
+1 613 533-6000 ext. 79648, [email protected]

About the Journal

The Canadian Journal of Fisheries and Aquatic Sciences (publishing since 1901 under various titles) is the primary publishing vehicle for the multidisciplinary field of aquatic sciences. It publishes perspectives (syntheses, critiques, and re-evaluations), discussions (comments and replies), articles, and rapid communications, relating to current research on -omics, cells, organisms, populations, ecosystems, or processes that affect aquatic systems. The journal seeks to amplify, modify, question, or redirect accumulated knowledge in the field of fisheries and aquatic science.

Disclaimer

Canadian Science Publishing publishes the NRC Research Press suite of journals but is not affiliated with the National Research Council of Canada. Papers published by Canadian Science Publishing are peer-reviewed by experts in their field. The views of the authors in no way reflect the opinions of Canadian Science Publishing. Requests for commentary about the contents of any study should be directed to the authors.

Media Contact

Dave Rideout
[email protected]
613-533-6000 x79648
@cdnsciencepub

http://www.nrcresearchpress.com/

http://dx.doi.org/10.1139/cjfas-2016-0500

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025
blank

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Yb2O3 Influence on YbScSZ Electrolyte Properties

Improved Communication Could Advance Cancer Treatment and Save Lives

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.