• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The turbulent healing powers of plasma

Bioengineer by Bioengineer
September 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
{FEATUREDTYPE}

Credit: {FEATUREDCREDIT}{FEATUREDCREDITMORE}

WASHINGTON, D.C., September 11, 2017 — Researchers are starting to discover the curing powers of plasma — bringing the ion-based form of matter into medical realms. A kind of plasma called non-equilibrium atmospheric pressure plasma can help heal wounds, destroy cancer cells and kill harmful bacteria.

The jets of plasma that doctors might use, however, often become turbulent with the direction and velocity changing dramatically. Now, researchers have found this turbulence likely emerges from heat-induced sound waves generated at the plasma electrodes. This new insight is critical for more consistent and effective medical therapies.

"Now that we understand where the induced turbulence in atmospheric pressure plasma jets is coming from, it may be possible to better control it," said Amanda Lietz of the University of Michigan, who is an author of a new report discussing these results, based on computer simulations, appearing as the cover article this week in the journal Applied Physics Letters, from AIP Publishing.

A plasma is an ionized gas consisting of the positively charged ions and free-flowing electrons. They tend to be extremely hot, like those found in fusion devices. Non-equilibrium atmospheric pressure plasma jets, however, are cool to the touch.

In a typical medical device, atmospheric pressure plasma is made from a noble gas such as helium. An electric field ionizes the helium by removing an electron from each atom, creating a plasma that's not only at atmospheric pressure, but is also near room temperature.

The plasma flows through a handheld, pen-sized instrument and exits as a high-speed jet. The jet mixes with ambient air, which is filled with chemical species such as oxygen, nitrogen and water vapor molecules. The fast-moving electrons in the plasma slam into these molecules, producing highly reactive species such as hydroxyl and nitric-oxide molecules. These radicals, as they're also called, are therapeutic.

Scientists still aren't entirely sure why these plasma-produced radicals are so beneficial in human therapies. They hypothesize that the reactive particles may induce an immune response in the body or modify the biochemical signaling agents between cells. In the case of cancer, the radicals might also trigger an oxidative stress response. Because cancer cells are already in a more stressed state than healthy cells, the radicals may push the cancer cells over the edge, killing them while healthy cells remain unharmed.

To kill exposed bacteria, the radicals can tear into the bacterial cell walls. Plasma, therefore, also can be used to sterilize surgical tools. Although plasmas are used for cutting in surgery, the FDA hasn't yet approved direct plasma treatment for wound healing and cancer, although doctors have used it in isolated, FDA-sanctioned studies. Clinical trials in Europe have already begun.

One problem is that the plasma jets can be temperamental, according to Mark J. Kushner from the University of Michigan and also one of the paper's authors. Sometimes the jets are perfectly laminar and even. Other times they're turbulent, leading to irreproducible results.

"From a clinical standpoint, that's probably not what you want," he said. "To obtain FDA approval of a plasma process, you want to be able to say that every time I treat the patient I'm treating in the same way."

At the same time, you might want some turbulence to make more of the radicals needed for a particular therapy. Regardless, no one was certain what causes the turbulence.

When the researchers simulated the plasma jets, they found that the electrodes in the instrument — which are needed to create the electric field that makes the plasma — generate heat. This heat spawns a sound wave that travels out through the jet and along the boundary where the plasma meets the air, a layer that's prone to be unstable. The sound wave disturbs this layer, likely triggering turbulent plumes.

Now that this phenomenon is relatively understood, Kushner said, researchers can enhance or dampen this effect, depending on what's best for the patient. Ultimately, he said, this new analysis can lead to an approved and reliable treatment.

###

The article, "Plasma-induced flow instabilities in atmospheric pressure plasma jets," is authored by Amanda Lietz, Eric Johnsen and Mark J. Kushner. The article will appear in Applied Physics Letters Sept. 11, 2017 (DOI: 10.1063/1.4996192). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4996192.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

Related Journal Article

http://dx.doi.org/10.1063/1.4996192

Share12Tweet8Share2ShareShareShare2

Related Posts

Body Image and Spiritual Well-Being in Exercise Addiction

October 30, 2025

Cultural Conflicts Cause Distress for Dementia Caregivers

October 30, 2025

Immunotherapy Plus Radiotherapy in Advanced Lung Cancer

October 30, 2025

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Body Image and Spiritual Well-Being in Exercise Addiction

Cultural Conflicts Cause Distress for Dementia Caregivers

Immunotherapy Plus Radiotherapy in Advanced Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.