• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Muscle nuclei: May the force be with you

Bioengineer by Bioengineer
September 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Image and video: William Roman, Edgar Gomes Lab Concept and animation: Ana de Barros, iMM Lisboa

A group of researchers at Instituto de Medicina Molecular (iMM) Lisboa has revealed the mechanism by which cellular nuclei reach their position within muscle cells. This discovery, now published in Nature Cell Biology, can have important implications in therapeutic strategies to treat muscular diseases.

Muscular diseases can range from genetic disorders to aging muscles. Muscle loss affects the entire segment of the aged population. This increases the risk of severe mobility limitations, hospitalization and mortality. These numbers will all be inflated by the growing aging population. It is estimated that by 2050 the world's population above 60 year's old will double reaching around 2 billion world-wide. This generalized aging poses a series of challenges for society.

A hallmark of muscle cells is the unique position of their nuclei at the cellular periphery. In multiple muscle diseases, this nuclear positioning fails to occur. Although the severity of symptoms varies amongst affected individuals, these diseases result in a gradual loss of muscle function that leads to a loss of autonomy.

The team led by Edgar Gomes studies nuclear positioning during muscle formation, in particular how nuclei move from an initial central position to the periphery of muscle cells.

"Throughout my PhD I heard scientists commenting on nuclear positioning as an indicator for muscle diseases without knowing how nuclei are positioned. It was therefore exhilarating to uncover how this process occurred; now we have to understand why", said the study's first author William Roman.

Researchers devised a unique protocol that allowed them to design a theoretical model to explain this natural phenomenon. The model was then tested in the laboratory and lead to the identification of the forces involved in nuclear movement at a molecular level.

"It was fascinating to observe for the first time how nuclei are positioned at the periphery of the muscle fibers. We expect that this discovery will be important to develop novel treatments for different muscle disorders and for sport-induced muscle injuries", said Edgar Gomes.

This work, which also involved teams at the Crick Institute in London, and Center for Research in Myology in Paris, identifies both the mechanism and the molecular pathways involved in nuclear positioning in muscle. Since nuclear positioning is disrupted in most muscle disorders, these discoveries can become targets for novel therapeutic strategies.

In the future, this work can be basis for the identification of optimal physical exercises to preserve and repair muscle capacity. Formulating workout strategies not only for aging population but also for athletes would promote a healthier lifestyle.

###

iMM Lisboa

The Instituto de Medicina Molecular in Lisbon (Portugal) is a private non-profit research institute that offers a vibrant scientific environment where world-class ingenious scientists with an ambitious research portfolio are supported by state-of-the-art technology, aiming to maximize creativity towards discoveries without boundaries. In spite of iMM's young age (created in 2002), several iMM findings, spanning from basic to translational research, are already being applied to improve human health. imm.medicina.ulisboa.pt/en/

Media Contact

Ana de Barros
[email protected]

https://imm.medicina.ulisboa.pt/en/

Original Source

https://imm.medicina.ulisboa.pt/index.php?cID=2626 http://dx.doi.org/10.1038/ncb3605

Share12Tweet7Share2ShareShareShare1

Related Posts

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

September 18, 2025
Dogs Without Training Can Understand How Different Toys Work, Even When They Look Unfamiliar

Dogs Without Training Can Understand How Different Toys Work, Even When They Look Unfamiliar

September 18, 2025

Dogs Extend Word Meanings to New Objects by Function Rather Than Appearance, Study Finds

September 18, 2025

Stem Cell Regulators Control G1 Length Gradient

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IU Scientists Discover Two Protein Targets to Undermine Pancreatic Cancer Defenses

University of Houston Co-Leads $25 Million NIH Grant to Investigate Slowing Childhood Nearsightedness

Robotic Servicing Payload from Naval Research Laboratory Passes Thermal Vacuum Lab Testing, Prepares for Space Mission

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.