• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Individuality drives collective behavior of schooling fish

Bioengineer by Bioengineer
September 7, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jolle W. Jolles

New research sheds light on how "animal personalities" – inter-individual differences in animal behaviour – can drive the collective behaviour and functioning of animal groups such as schools of fish, including their cohesion, leadership, movement dynamics, and group performance. These research findings from the University of Konstanz, the Max Planck Institute of Ornithology and the University of Cambridge provide important new insights that could help explain and predict the emergence of complex collective behavioural patterns across social and ecological scales, with implications for conservation and fisheries and potentially creating bio-inspired robot swarms. It may even help us understand human society and team performance. The study is published in the 7 September 2017 issue of Current Biology and is available open access: http://dx.doi.org/10.1016/j.cub.2017.08.004 (will go live at 19:00 CET)

For centuries, scientists and non-scientists alike have been fascinated by the beautiful and often complex collective behaviour of animal groups, such as flocks of birds, schools of fish, and herds of wildebeest. Animals often group together and time and coordinate their behaviour as it may provide them with protection against predators and help in finding food. Often, those spectacular collective patterns emerge from individual group members using simple rules in their interactions, as compelling experimental and theoretical work has shown.

Over the last decade it has become apparent that consistent inter-individual differences are ubiquitous across the animal kingdom. Animals often differ consistently from one another in a wide range of different traits, often referred to as "animal personalities". But the role such differences may play in the emergence of collective behaviour remains unclear.

In a new paper in the journal Current Biology, a team of researchers from the University of Konstanz, the Max Planck Institute of Ornithology and the University of Cambridge now present compelling experimental and theoretical evidence that suggests that individual characteristics play a fundamental role in the dynamics and functioning of social groups. This research shows for the first time how the behaviour of groups can be predicted from the characteristics of the individuals that make them up and takes an impressive step forward in predicting how individuals in groups will behave based on their personality.

Dr Jolle Jolles, lead author of the study, said: "To properly understand how much influence individuals have over the collective behaviour of the group, we tested individual stickleback fish in different behavioural assays and then exposed them in groups to a range of ecological environments while accurately tracking their position and movements over time."

"What we found is that fish that tended to spent more time near others actually had lower individual speeds, had more central positions in the group, and were much more likely to follow in the freely swimming shoals. In turn, groups composed of such individuals were more cohesive, moved less, and were considerately less coordinated than groups consisting of individuals that had less social, faster behavioural tendencies."

Dr Andrea Manica, reader at the Department of Zoology University of Cambridge and co-author added: "By also testing the shoals in different environments with hidden patches of food, we found that it was the combination of the fishes' exploratory tendency and their speed in the group that ultimately drove both individual and group foraging performance."

"We additionally created a simple agent-based computer model of self-organised groups. This allowed us to reveal that these multi-scale effects emerge naturally from the local interactions of individuals that simply differ in their preferred swimming speeds" said Prof. Iain Couzin, director of the Max Plank Institute of Ornithology, Department of Collective Behavior, and co-author of the study. This suggests that individual differences in speed can provide a simple, self-organizing mechanism by which collective behavior and group functioning can emerge without individuals requiring global knowledge of their group.

"By harmonising two rather different approaches from the fields of animal personality and collective behaviour this study achieves a parsimonious, self-consistent explanation of how inter-individual differences can drive within- and between-group variability and the emergence of group structure, leadership, movement dynamics, and group foraging performance" said Jolles.

###

Original publication: Jolle W. Jolles, Neeltje J. Boogert, Vivek H. Sridhar, Iain D. Couzin & Andrea Manica: Consistent individual differences drive collective behaviour and group functioning of schooling fish, Current Biology

DOI: 10.1016/j.cub.2017.08.004

Facts:

  • Funded by: the Biotechnology and Biological Sciences Research Council (Graduate Research Fellowship to J.W.J)
  • Method: The researchers determined the behavioural tendencies of 125 stickleback fish by two different personality assays and randomly allocated them to 25 groups of five. Subsequently, the groups were tested repeatedly in three contexts that reflect different, ecologically-relevant scenarios (e.g. area exploration, foraging). Using sophisticated tracking software, the researchers kept track of the identity of the fish in the freely moving shoals and accurately recorded their position and movements over time. In addition, agent-based computer models were used to seek a parsimonious explanation for the observed patterns.
  • Research partners: University of Konstanz, Max Planck Institute of Ornithology Radolfzell, University of Cambridge

Note to editors: Photos can be downloaded here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Bilder/SticklebacksWild2_JWJ.jpg

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Bilder/stickleback_school_bodensee_Jolles.jpg

Caption: Highly coordinated school of three-spined sticklebacks swimming in the blue waters of the Bodensee near Konstanz, Southern Germany.
Photo: Jolle W. Jolles

Contact:
University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
Email: [email protected]

– uni.kn

Media Contact

Julia Wandt
[email protected]

https://cms.uni-konstanz.de/en/university-of-konst

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2017.08.004

Share12Tweet7Share2ShareShareShare1

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Delegation May Boost Dishonest Behavior

Prenatal Counseling of Trisomy 18 Heart Defects

DeepSeek-R1 Boosts LLM Reasoning via RL

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.