• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Trigger for fatty liver in obesity

Bioengineer by Bioengineer
September 7, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UZH

In Switzerland, about every tenth adult suffers from morbid obesity. Such corpulence can not only lead to diabetes or cardiovascular disease, but also to fat accumulation in the liver. Worldwide, about 25 to 30 percent of all adults and increasingly children are affected by such steatosis – becoming the most frequent liver disease in recent years. Some patients suffer from inflammation that could lead to a scarred shrinkage of the liver (cirrhosis) or even cancer.

Receptor for programmed cell death activated

Despite the increasing frequency of obesity-related liver steatosis, there is currently insufficient knowledge about the origin of this disease. At the University Children's Hospital Zurich, researchers from the University of Zurich have identified a signaling pathway in liver cells that may contribute to the development of steatosis. In the process, the plasma membrane receptor Fas (CD95) is key; this cell receptor occurs in almost all human cells and is involved in programmed cell death (apoptosis). This self-destruction program is activated when cells are no longer functional or are even developing malignantly. Activation of the Fas receptor then induces apoptosis in these cells. A low-threshold acti-vation of Fas, however, can trigger cell reproduction or an inflammatory response without cell death occurring.

Lack of Fas receptor protects against a fatty liver

"In our study, we were able to demonstrate in mouse models that Fas is activated within the scope of obesity and can therefore lead to the development of liver steatosis," says Prof. Dr. med. Daniel Kon-rad, professor for endocrinology and diabetology from the University of Zurich and physician at the University Children's Hospital Zurich. "Mice missing Fas in their liver cells were protected against the development of obesity-induced fatty liver for the most part." The animals are also considerably less insulin resistant. "Conversely, our study shows that an increased Fas content in the liver can lead to liver steatosis and insulin resistance, even in case of a normal body weight," Konrad explains.

Permeable mitochondria inhibit lipid oxidation

The team of researchers found indications that an activation of Fas affects the mitochondria: Their capacity to oxidize fatty acids is limited and therefore leads to the accumulation of lipids in liver cells. In the process, the protein-coded gene "BID" plays an important role. This gene is also involved in programmed cell death, leading to an increased permeability of the mitochondrial membrane. The researchers were able to demonstrate that mice with increased Fas content but simultaneously low BID content in the liver were protected against the development of fatty liver.

New therapy approach possible

The study therefore shows how both factors, Fas and BID, interact in case of obesity contributing to fatty liver disease. "The described signaling pathway of Fas and BID could serve as a novel target for a better treatment of fatty liver disease associated with obesity," Daniel Konrad explains.

###

Literature: Flurin Item, Stephan Wueest, Vera Lemos, Sokrates Stein, Fabrizio C. Lucchini, Rémy Denzler, Muri-el C. Fisser, Tenagne D. Challa, Eija Pirinen, Youngsoo Kim, Silvio Hemmi, Erich Gulbins, Atan Gross, Lorraine A. O'Reilly, Markus Stoffel, Johan Auwerx, Daniel Konrad. Fas Cell Surface Death Receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communications. 7. September, 2017.DOI: 10.1038/s41467-017-00566-9

Media Contact

Dr. Daniel Konrad
[email protected]
41-442-667-385
@uzh_news

http://www.uzh.ch

Original Source

http://www.media.uzh.ch/en/Press-Releases/2017/Fatty-Liver-in-Obesity.html http://dx.doi.org/10.1038/s41467-017-00566-9

Share12Tweet7Share2ShareShareShare1

Related Posts

Human Auditory Cortex Integrates Sounds Based on Absolute Time

September 18, 2025
blank

Miniaturized Chaos-Enhanced Spectrometer Revolutionizes Sensing

September 18, 2025

Redox-Controlled Liver Gluconeogenesis Affects Exercise Intensity

September 18, 2025

Aging Unfolds Naturally, Beyond the Body’s Clock

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Human Auditory Cortex Integrates Sounds Based on Absolute Time

Miniaturized Chaos-Enhanced Spectrometer Revolutionizes Sensing

Redox-Controlled Liver Gluconeogenesis Affects Exercise Intensity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.