• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tick tock

Bioengineer by Bioengineer
September 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Around the world, ticks are one of the most important vectors of zoonotic diseases — animal diseases communicable to humans — and they're everywhere.

While North Americans worry about Lyme disease carried by blacklegged or deer ticks, on the other side of the globe, people contend with a different variety of tick-borne fevers. A new study by UC Santa Barbara researchers and colleagues suggests that the abundance of ticks that carry certain fevers are likely to rise in the future, thanks to a combination of wildlife loss and climate change.

The study used a large-scale experimental test to demonstrate synergistic effects of those phenomena on ticks and their pathogens. The investigators found that total tick abundance and abundance of infected ticks increased dramatically when large animals were lost — and that this effect was exacerbated in dryer, low-productivity areas. Their analysis appears in the Proceedings of the Royal Society B.

"Our research suggests that large mammal conservation may prevent increases in tick abundance and tick-borne disease risk," said lead author Georgia Titcomb, a graduate student in UCSB's Department of Ecology, Evolution, and Marine Biology (EEMB). "These results are timely and relevant in light of widespread wildlife declines and unpredictable regional climatic shifts in a steadily warming world."

For their investigation, the scientists used a long-term, size-selective herbivore exclosure experiment at the Mpala Research Centre in Kenya to examine impacts to the abundance of ticks and two regionally important tick-borne pathogens, Coxiella burnetii and Rickettsia spp., the causative agents of Q fever and spotted fevers, respectively.

The experiment included four plot treatments. The first excluded all but the smallest rodent-sized herbivores, mostly mice; the second permitted intermediate-size animals such as hares and small antelope. In the third treatment, all animals but mega- herbivores such as giraffes and elephants were allowed to penetrate the plot. The control had no animal restrictions. The researchers spend more than a year conducting monthly hour-long tick drags in each plot.

The results showed that total wildlife exclusion increased total tick abundance by 130 percent at sites with a moderate amount of moisture and by 225 percent at dry, low-productivity sites. For a subset of months when differing degrees of exclusion were tested, total tick abundance increased from 170 percent in the plot with mega-herbivores to 360 percent when all large wildlife were excluded.

"This suggests that exposure risk will respond to wildlife loss and climate change in proportion to total tick abundance," said co-author Hillary Young, an EEMB associate professor and Titcomb's adviser. "We've shown these interacting effects increase disease risk, but they also highlight the need to incorporate ecological context when making predictions about the effects of wildlife loss on zoonotic disease dynamics."

###

This research was supported by grants from the National Geographic Society, the National Science Foundation, the Morris Animal Foundation and the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Julie Cohen
[email protected]
805-893-7220
@ucsantabarbara

http://www.ucsb.edu

http://www.news.ucsb.edu/2017/018244/tick-tock

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.