• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The protein TAZ sends ‘mixed signals’ to stem cells

Bioengineer by Bioengineer
September 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Xingliang Zhou/Ying Lab, USC Stem Cell

Just as beauty exists in the eye of the beholder, a signal depends upon the interpretation of the receiver. According to new USC research published in Stem Cell Reports, a protein called TAZ can convey very different signals–depending upon not only which variety of stem cell, but also which part of the stem cell receives it.

When it comes to varieties, some stem cells are "naïve" blank slates; others are "primed" to differentiate into certain types of more specialized cells. Among the truly naïve are mouse embryonic stem cells (ESCs), while the primed variety includes the slightly more differentiated mouse epiblast stem cells (EpiSCs) as well as so-called human "ESCs"–which may not be true ESCs at all.

In the new study, PhD student Xingliang Zhou and colleagues in the laboratory of Qi-Long Ying demonstrated that naïve mouse ESCs don't require TAZ in order to self-renew and produce more stem cells. However, they do need TAZ in order to differentiate into mouse EpiSCs.

The scientists observed an even more nuanced situation for the primed varieties of stem cells: mouse EpiSCs and human ESCs. When TAZ is located in the nucleus, this prompts primed stem cells to differentiate into more specialized cell types–a response similar to that of the naïve cells. However, if TAZ is in the cytoplasm, or the region between the nucleus and outer membrane, primed stem cells have the opposite reaction: they self-renew.

"TAZ has stirred up a lot of controversy in our field, because it appears to produce diverse and sometimes opposite effects in pluripotent stem cells," said Ying, senior author and associate professor of stem cell biology and regenerative medicine. "It turns out that TAZ can indeed produce opposite effects, depending upon both its subcellular location and the cell type in question."

First author Zhou added: "TAZ provides a new tool to stimulate stem cells to either differentiate or self-renew. This could have important regenerative medicine applications, including the development of a better way to generate the desired cell types for cell replacement therapy."

###

Additional co-authors include Ying Lab members Jean Paul Chadarevian and Bryan Ruiz.

This research project was funded by a California Institute for Regenerative Medicine (CIRM) New Faculty Award II (RN2-00938), a CIRM Scientific Excellence through Exploration and Development (SEED) Grant (RS1-00327), and the Chen Yong Foundation of the Zhongmei Group. Zhou was also supported by a federally funded predoctoral fellowship from the Eunice Kennedy Shriver National Institute of Child Health and Human Development/USC Joint T32 Training Program in Developmental Biology, Stem Cells, and Regeneration.

Media Contact

Zen Vuong
[email protected]
213-300-1381
@keckmedusc

Keck Medicine of USC

Original Source

https://stemcell.usc.edu/2017/08/24/the-protein-taz-sends-mixed-signals-to-stem-cells/ http://dx.doi.org/10.1016/j.stemcr.2017.07.019

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025
blank

Evaluating PR1 Genes in Mung Bean’s Pathogen Response

November 5, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

Large Language Models Boost Human-Robot Flexible Scheduling

DNA Repair Deficiency Linked to UTUC Nectin-4

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.