• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New insights into bacterial toxins

Bioengineer by Bioengineer
September 5, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A toxin produced by a bacterium that causes urinary tract infections is related to, yet different in key ways from, the toxin that causes whooping cough, according to new research. The findings, which will be published in the Sept. 8 issue of The Journal of Biological Chemistry, could aid in the development of new vaccines.

The key ingredient in the existing vaccine against whooping cough, or pertussis, is an inactive form of pertussis toxin. Active pertussis toxin works by entering white blood cells and chemically modifying a category of G proteins, which are essential signaling molecules. These modified G proteins are no longer able to bind to their receptors, which disrupts essential signaling inside the cell, locally disabling the immune response and allowing the bacteria to proliferate. Inactive pertussis toxin found in the vaccine teaches the immune system to avoid this silencing.

Proteins similar to the pertussis toxin are produced by many bacteria, but relatively little is known about what they do or how they work. A research team overseen by Jamie Rossjohn at Monash University in Melbourne, Australia, was interested in investigating the diversity of understudied pertussislike toxins and seeing what could be learned from them.

"[Pertusis toxin] is really quite an amazing molecule, and it's been highly essential in the vaccine against whooping cough," said Dene Littler, the research fellow who led the work. "I got really excited about the idea that there could be other forms of this toxin in other bacteria, perhaps in bacteria that cause long-term chronic infections where it is quite necessary for bacteria to turn off the immune system in order to live."

Littler and his colleagues searched for DNA sequences similar to those encoding pertussis toxin among the published genomes of bacteria. They found a number of pertussislike toxin sequences in the genomes of the subset of strains of E. coli that can live benignly in the gut but cause symptoms if they enter the blood or urinary tract. This was a clue that pertussislike toxins are widespread among pathogenic E. coli, but it was unknown whether the E. coli pertussislike toxin, or EcPlt, works the same way that pertussis toxin does.

"I was particularly interested in what happened once the toxins [produced by E. coli] were inside the cell," Littler said. Many studies of bacterial toxins examine how toxins first enter cells and the effect on the cell, not precisely how the toxin changes – and is changed in – the intracellular environment.

The team carried out biochemical studies on EcPlt from a bacterial strain that causes urinary tract infections. They produced the first report of the EcPlt's active form inside human cells, describing how the chemical environment inside the cell caused the protein to change shape and activate.

They also found that, although EcPlt modifies the same G protein and disrupts the same signaling pathway as the pertussis toxin does, it does so in a slightly different manner. Pertussis toxin is able to modify only one specific amino acid in its human G protein target; if that amino acid changes, the G protein is no longer affected by the pertussis toxin. EcPlt, on the other hand, modified a different amino acid but similarly disrupted G-protein signaling.

"Perhaps the way that pertussis does [this modification] is simply harder for human cells to undo," Littler said, speculating about why the whooping cough caused by pertussis toxin is a more severe disease than urinary tract infections caused by EcPlt-producing bacteria.

Littler is hopeful that understanding the natural diversity of pertussislike toxins could help improve existing vaccines and create new ones.

"Our toxin structures help identify how pertussislike toxins function and help define ways to produce inactive versions," Littler said. "The pertussis toxin component of the DTaP vaccine is highly successful. Vaccines directed against other pertussislike proteins could be equally efficacious in preventing disease."

###

The work was funded by The National Health and Medical Research Council, the Australian Research Council and the Australian Synchrotron Capital Access Program.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact

Sasha Mushegian
[email protected]
@asbmb

http://www.asbmb.org

http://dx.doi.org/10.1074/jbc.M117.796094

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.