• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Seeing’ robot learns tricky technique for studying brain cells in mammals

Bioengineer by Bioengineer
August 30, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Whole-cell patch clamp electrophysiology, or whole-cell recording (WCR), is the gold-standard technique for studying the behaviour of brain cells called neurons under different brain states such as stress or learning.

The procedure has been used in mammals since it was developed in the 1970s. It helps scientists to understand brain function and brain disorders such as Alzheimer's. They do this by looking at the electrical activity of individual neurons in a live mammal brain to build a bigger picture of its function as a whole organ. This information is used to understand the role of electrical function in human brain disorders.

However, WCR is notoriously challenging to perform because of the small scale of the equipment and the microscopic nature of the cells involved. It also requires very precise movements to find neurons and then record their electrical currents accurately. Therefore only a small number of laboratories worldwide specialise in the technique.

Now, for the first time, a team of scientists led by Professor Simon Schultz and Dr Luca Annecchino at Imperial College London has developed a robot and computer programme that can guide tiny measuring devices called micropipettes to specific neurons in the brains of live mice and record electrical currents, all without human intervention. This is the first reported fully automated platform to do this.

Senior author Professor Schultz said: "To understand the brain as a whole organ, we need to know how neurons work and communicate with one another. Neurons in themselves are complex structures that use electrical and molecular signals to send information to neighbouring neurons, and the brain as a whole structure. Neurons also act differently depending on whether they are healthy or not fully functioning due to certain brain disorders. The WCR technique is a way to eavesdrop on these cells and how they communicate with their neighbours.

"However, structures that cannot be seen with the naked human eye require very precise and accurate ways to measure them. We have managed to do so successfully so far, but now we have taught robots to 'see' the neuron and perform the procedure even better. This means WCR can now potentially be performed on a much larger scale, which could speed up our learning about the brain and its disorders."

The conventional method for carrying out WCR involves scientists tagging a specific neuron with fluorescent protein or dye. They achieve this by guiding a robotic arm to the neuron. This is done by sending electrical pulses into the brain via a pipette filled with electrically conductive fluid. The pulses diffuse into the brain until the micropipette nears a neuron, which creates a block in electrical signal that tells the human or robot operator when to stop moving the micropipette.

At this point the micropipette clamps onto the outside of the cell, penetrating the membrane using a pulse of suction pressure. It then conducts any electrical signals from the neuron up through the micropipette, and into a computer via the conductive fluid.

The new method reported in the study by Professor Schultz, from Imperial's Department of Bioengineering, and his colleagues demonstrates how a robot can do this automatically, without any human input.

The team compared their technique with the conventional approach and found that the robot was faster and more accurate than its human counterparts. The findings are published in the journal Neuron.

The automation might mean the technique can be performed much more widely around the world, and even in labs with no expertise in the technique.

Lead author Dr Annecchino said: "Although the procedure has existed for a number of years, we humans still find it very difficult to perform. However, it is so valuable in teaching us about the mammalian brain, that it is the ideal candidate for robotic automation. We plan to commercialise the programme so that research all over the world can benefit."

Next, the researchers will study how brain circuits are disturbed by the amyloid plaques seen in Alzheimer's disease. Dr Annecchino added: "Ultimately, the problems in Alzheimer's result from changes in the information processing capability of networks of individual brain cells. This is exactly what we can monitor with the technique."

###

Media Contact

Caroline Brogan
[email protected]
44-020-759-43415
@imperialspark

http://www.imperial.ac.uk/press

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.