• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

NJIT Oil spill expert assesses use of deep-sea dispersants in Deepwater Horizon cleanup

Bioengineer by Bioengineer
August 28, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

More than seven years after the Deepwater Horizon drilling rig exploded, sending up to 900,000 tons of oil and natural gas into the Gulf of Mexico, there are lingering questions about the safety and effectiveness of a key element of the emergency response: injecting chemicals a mile below the ocean surface to break up oil spewing from the ruptured sub-sea wellhead to prevent them from reaching environmentally sensitive regions.

To date, spill cleanups have focused primarily on removing or dispersing oil on the ocean surface and shoreline, habitats deemed more important ecologically. Knowledge of the deep ocean is in general far murkier, and at the time of the accident, BP's drilling operation was the deepest in the world.

In a groundbreaking study published today in the Proceedings of the National Academy of Sciences, collaborators from the Woods Hole Oceanographic Institution, New Jersey Institute of Technology, Texas A&M University and the Swiss Federal Institute of Aquatic Science and Technology pooled their scientific and technical expertise to provide some of the first answers to these controversial policy questions.

The team began by developing physical models and computer simulations to determine the course the oil and gas took following the eruption, including the fraction of larger, more buoyant droplets that floated to the surface and the amount of smaller droplets entrapped deep below it due to sea stratification and currents.

Michel Boufadel, director of NJIT's Center for Natural Resources Development and Protection (NRDP) and Lin Zhao, a post-doctoral fellow at the center, developed a model to predict the size of droplets and gas bubbles emanating from the wellhead during the sub-surface blowout. They factored water pressure, temperature and oil properties into the model, and then employed it to analyze the effects of the injected dispersants on this stream. Researchers at Texas A&M in turn created a model to study the movement of pollutants away from the wellhead.

The researchers determined that the use of dispersants had a substantial impact on air quality in the region of the spill by reducing the amount of toxic compounds such as benzene that reached the surface of the ocean, thus protecting emergency workers on the scene from the full brunt of the pollution.

"Government and industry responders were faced with an oil spill of unprecedented size and sea depth, pitting them in a high-stakes battle against big unknowns," Christopher Reddy, a senior scientist at Woods Hole Oceanographic Institution, and Samuel Arey, a senior researcher at the Swiss Federal Institute of Aquatic Science and Technology, wrote in Oceanus magazine.

"Environmental risks posed by deep-sea petroleum releases are difficult to predict and assess due to the lack of prior investigations," Boufadel noted. "There is also a larger debate about the impact of chemical dispersants. There is a school of thought that says all of the oil should be removed mechanically."

Boufadel added that the water-soluble and volatile compounds that did not reach the surface were entrapped in a water mass that formed a stable intrusion at 900 to 1,300 meters below the surface.

"These predictions depend on local weather conditions that can vary from day to day. However, we predict that clean-up delays would have been much more frequent if subsurface dispersant injection had not been applied," Reddy and Arey said, adding, "But this is not the final say on the usage of dispersants."

###

About NJIT

One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. With an enrollment of 11,400 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering, and cybersecurity, in addition to others. NJIT is among the top U.S. polytechnic public universities in research expenditures, exceeding $130 million, and is among the top 1 percent of public colleges and universities in return on educational investment, according to PayScale.com. NJIT has a $1.74 billion annual economic impact on the State of New Jersey.

Media Contact

Tanya Klein
[email protected]
973-596-3433
@njit

http://www.njit.edu

http://dx.doi.org/10.1073/pnas.1612518114

Share12Tweet8Share2ShareShareShare2

Related Posts

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

October 27, 2025
Cloud Relay Boosts Blockchain Logging for IoT Fermentation

Cloud Relay Boosts Blockchain Logging for IoT Fermentation

October 27, 2025

How Uptake of DNA Fragments from Dying Cells Could Transform Mammalian Evolution and Genomics

October 27, 2025

Scientists Uncover Mechanism Behind Glucocorticoid Receptor Complexity

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Text-Based System Accelerates Hospital Discharges to Long-Term Care Facilities

New Cleveland Clinic Study Reveals That Up to 5% of Americans Harbor Cancer-Linked Genetic Mutations

Researchers Unlock the Mechanisms Driving Attachment Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.