• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UMass Amherst study of bee health finds no natural medicine in once-promising compound

Bioengineer by Bioengineer
August 28, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UMass Amherst

AMHERST, Mass. – A new study of possible self-medicating behavior in bumble bees conducted by researchers at the University of Massachusetts Amherst reports that a once-promising finding was not supported by further experiments and analysis.

Doctoral candidate Evan Palmer-Young and his advisor, evolutionary ecologist Lynn Adler, had reported in 2015 that a common parasitic infection of bumble bees was reduced when the bees fed on anabasine in sugar water. Anabasine is a natural alkaloid, nicotine-like chemical found in plant nectar. The researchers had hoped their finding was evidence that bees may use "nature's medicine cabinet" to rid themselves of the intestinal parasite Crithidia bombi, which can decrease the survival of queen bees over the winter and hamper the success of young colonies in the spring.

But as they report in the current issue of PLOS ONE, those results were not borne out with further investigation. "Although uninfected bees in our experiments were not adversely affected by alkaloid-containing diets, anabasine had deleterious effects on infected bees. This is the first report of exacerbation of floral alkaloids' negative effects by Crithidia infection," they write.

Further, "This exacerbation is consistent with a growing body of work that suggests the negative effects of combined stressors – including infection, diet quality, and consumption of pesticides – on pollinator health and that widespread infection could have consequences for bees' ability to tolerate phytochemicals."

Palmer-Young notes, "Although this finding does not match the result of the initial set of experiments published in Proceedings B, anabasine is chemically and pharmacologically similar to nicotine, a well-known insecticide. Nicotine-like pesticides have been shown to reduce survival and impair immune function in honey bees, for example, and nicotine sensitivity can be exacerbated when bees are also faced with challenges to their immune systems. These interactions between nicotine-like chemicals and infection are consistent with our results, in which miniature queen-less colonies had reduced productivity when faced with pathogens plus a potentially poisonous compound."

Palmer-Young and colleagues suggest that the alkaloid's infection-reducing properties may depend on bee colony and nutritional status, rather than on the chemical's direct toxicity to parasites. "The concentrations of anabasine tested here are 100-fold lower than those required to inhibit growth of parasite cell cultures," Palmer-Young says, "and we did not find any evidence for variation in anabasine sensitivity across parasite strains. Hence, it does not appear that direct effects of anabasine on parasite growth can explain any anabasine-mediated effects on Crithidia infection."

He adds, "The only experiment in which anabasine had effects on infection were when bees were deprived of pollen, their usual protein source. But it is known that bees require pollen to produce certain enzymes, including those that might break down compounds like anabasine. It may be that the absence of pollen in the diet interfered with the bees' ability to detoxify anabasine, and thereby enhanced its pharmacological effect. It also seems that anabasine affects bees of different colonies in different ways.

"Anabasine consumption reduced infection in bees from two of the colonies in this experiment, but not in the other two. Alkaloids like anabasine can have strong effects on insect nervous systems and behavior. We need more research to explain how anabasine can affect parasite establishment, and how these effects are blunted or enhanced in bees with different genes and in different environmental conditions."

Palmer-Young says, "Another factor to consider is that for the bees, a key outcome is the success of the colony, not necessarily the individual. Even if anabasine reduces levels of infection in individual bees, it may not improve the survival of workers or the reproductive output of the colony. For example, a healthy bee may support higher numbers of parasites, so reduced infection level could conceivably reflect reduction in bee health rather than improvements. And in terms of reproductive metrics, in our experiments with micro-colonies–groups of 3 bees reared together–feeding anabasine to bees with Crithidia infection reduced survival and weight of developing larvae."

In other words, anabasine may aggravate, rather than ameliorate, the stress of bees faced with diseases. This work was supported by grants to Adler from the National Science Foundation and the USDA National Institute for Food and Agriculture (NIFA), and a NIFA pre-doctoral fellowship to Palmer-Young.

###

Media Contact

Janet Lathrop
[email protected]
413-545-0444
@umassscience

http://www.umass.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.