• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers report better way to create organic bioelectronics

Bioengineer by Bioengineer
August 24, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credit:Milad Khorrami & Mohammad Reza Abidian, University of Houston

With increasing scientific and medical interest in communication with the nervous system, demand is growing for biomedical devices that can better record and stimulate the nervous system, as well as deliver drugs and biomolecules in precise dosages.

Researchers with the University of Houston and Pennsylvania State University have reported a new fabrication technique for biocompatible neural devices that allow more precise tuning of the electrical performance of neural probes, along with improved properties for drug delivery.

"For years, scientists have been trying to interact with the nervous system, to diagnose Parkinson's disease, epilepsy, multiple sclerosis, brain tumors and other neural disorders and diseases earlier," said Mohammad Reza Abidian, associate professor of biomedical engineering at UH and lead author of a paper describing the fabrication technique in the journal Advanced Materials. "In our laboratory we create micro- and nano-devices to communicate with neurons."

Abidian said the new fabrication method allows researchers to precisely control the surface morphology of conducting polymer microcups, improving performance. They used electrojetting and electrodeposition methods for fabricating conducting polymer microcups on the surface of bioelectronics.

"We found that by varying the amount of electrical current and the length of deposition time of these conducting polymers, we can change the size, thickness and roughness, which is related to the electrical properties of the polymer," he said. "We show that conducting polymer microcups can significantly improve the electrical performance of the bioelectrodes."

Typical polymers are often used as an insulating material because they don't generally conduct electricity. The discovery of electronically conducting polymers in the 1970s was recognized with the Nobel Prize in chemistry in 2000.

"The primary requirement of neural devices is to provide high density electrodes that are biologically compatible with neural tissue, efficiently transduce biological signals to electronic signals, and remain functional for long periods of time," the researchers wrote.

But current technology still relies upon metallic materials, which are highly conductive but incompatible with neural tissue. The miniaturization required for the devices also limits the electrical performance, Abidian said.

Conducting polymers, in contrast, better mimic biological tissue in four ways: their soft mechanical properties simulate those of biological structures; their mixed electronic/ionic conductivity promotes efficient signal transduction; their transparency allows the simultaneous use of optical analysis techniques; and their facile functionalization with biomolecules helps tune biological responses.

The new fabrication method involves the electrospraying of monodisperse poly microspheres on gold substrates, followed by an electrochemical polymerization process. Then the researchers control the applied electrical field for the fabrication of conducting polymer microcups, Abidian said, which in turn allowed them to control the surface morphology.

###

Additional authors on the paper include Martin Antensteiner and Milad Khorrami both with UH, and Fatemeh Fallahianbijan and Ali Borhan with Penn State.

Media Contact

Jeannie Kever
[email protected]
713-743-0778
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2017/August%202017/08242017Abidian-Neural-Devices.php

Share12Tweet7Share2ShareShareShare1

Related Posts

HBA Gene Variations Enhance Tibetan Sheep’s High-Altitude Survival

HBA Gene Variations Enhance Tibetan Sheep’s High-Altitude Survival

November 30, 2025
Key SNPs Identified for Groundnut Kernel Quality

Key SNPs Identified for Groundnut Kernel Quality

November 29, 2025

Unlocking Seirinae Evolution with Mitogenomic Insights

November 29, 2025

FGF2 Gene’s Role in Sheep Horn Development Revealed

November 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glucocorticoids Enhance Liver Regeneration through Muscle Signals

Supporting Each Other: Chinese Nurses in Crisis

Catheter-Related Thrombosis in Pediatric Cancer Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.