• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study finds that gravity, ‘mechanical loading’ are key to cartilage development

Bioengineer by Bioengineer
August 22, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Aerospace Medicine and Human Performance.

Mechanical loading, or forces that stimulate cellular growth for development, is required for creating cartilage that is then turned to bone; however, little is known about cartilage development in the absence of gravity or mechanical loads. Now, in a study led by the University of Missouri, bioengineers have determined that microgravity may inhibit cartilage formation. Findings reveal that fracture healing for astronauts in space, as well as patients on bed rest here on Earth, could be compromised in the absence of mechanical loading.

"Cartilage tissue engineering is a growing field because cartilage does not regenerate," said Elizabeth Loboa, dean of the MU College of Engineering and a professor of bioengineering. "Because these tissues cannot renew themselves, bioreactors, or devices that support tissue and cell development, are used in many cartilage tissue engineering applications. Some studies suggest that microgravity bioreactors are ideal for the process to take place, while others show that bioreactors that mimic the hydrostatic pressure needed to produce cartilage might be more ideal. Our first-of-its-kind study was designed to test both theories."

Chondrogenic differentiation is the process by which cartilage is developed and cartilage is the basis for bone formation in the body. Additionally, cartilage does not renew itself once it breaks down or fails in the body, making it a target for bioengineers who wish to help patients regenerate cartilage from other cells.

Using human adipose, or fat cells (hASC) obtained from women, Loboa and her team tested chondrogenic differentiation in bioreactors that simulated either microgravity or hydrostatic pressure, which is the pressure that is exerted by a fluid.

Researchers found that cyclic hydrostatic pressure, which has been shown to be beneficial for cartilage formation, caused a threefold increase in cartilage production and resulted in stronger tissues. Microgravity, in turn, decreased chondrogenic differentiation.

"Our study provides insight showing that mechanical loading plays a critical role during cartilage development," Loboa said. "The study also shows that microgravity, which is experienced in space and is similar to patients on prolonged bed rest or those who are paralyzed, may inhibit cartilage and bone formation. Bioengineers and flight surgeons involved with astronauts' health should consider this as they make decisions for regenerating cartilage in patients and during space travel."

The study, "Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC," was published in Aerospace Medicine and Human Performance. Funding was provided by the National Space Biomedical Research Institute through NASA (NCC9-58), the National Institutes of Health (IR03EB008790) and the National Science Foundation (1133437). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Liliana F. Mellor, Andrew J. Steward, Rachel C. Nordberg and Michael A. Taylor from the Joint Department of Biomedical Engineering at North Carolina State University and the University of North Carolina, contributed to the study.

###

Media Contact

Jeff Sossamon
[email protected]
573-882-3346
@mizzounews

http://www.missouri.edu

Original Source

http://munews.missouri.edu/news-releases/2017/0822-mu-study-finds-that-gravity-mechanical-loading-are-key-to-cartilage-development/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Hesperidin Extraction from Kerman Citrus Peels

Silvopastoral Systems in Latin America: Adoption Challenges and Solutions

Understanding Financial Strain in Multimorbid Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.