• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

Bioengineer by Bioengineer
August 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A comprehensive genomic analysis of Wilms tumor – the most common kidney cancer in children – found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular processes that occur early in kidney development. The study, published in Nature Genetics, offers the possibility that targeting these processes, instead of single genes, may provide new opportunities for treatment of Wilms tumor.

"It is very difficult to therapeutically target over 40 genes that may be mutated in Wilms tumor," said senior author Elizabeth Perlman, MD, from Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago. "We discovered that many of these genetic mutations converge into two developmental pathways that lead to cancer. Early development of the kidney starts with rapid proliferation of undifferentiated cells. Within these cells, a signal triggers a switch to undergo differentiation into the normal cells of the kidney. In Wilms tumors, one set of mutations promotes abnormal and continued proliferation of the undifferentiated cells. A second set of mutations impacts the differentiation switch itself. Targeting these two different pathways in future studies might be more efficient than targeting individual gene mutations."

Perlman is the Head of the Department of Pathology and Laboratory Medicine at Lurie Children's and a Professor of Pathology at Northwestern University Feinberg School of Medicine. She is the Arthur C. King Professor of Pathology and Laboratory Medicine.

In the study, Perlman and colleagues in the Children's Oncology Group and the National Cancer Institute initially identified all genetic mutations in 117 Wilms tumor cases. Then they focused on a set of genetic mutations that occurred in more than one case and conducted a targeted analysis of these recurrent mutations in 651 Wilms tumors to validate the results. They found that the most common genes mutated in Wilms tumor were TP53, CTNNB1, DROSHA, WT1 and FAM123B.

In an unexpected finding, Perlman and colleagues also identified underlying germline mutations – or mutations in all the cells of the body – in at least 10 percent of Wilms tumor cases. "Our discovery of germline mutations in so many cases of Wilms tumor means that the children and family members of these patients may be at risk for tumor development," said Perlman.

###

Research at Ann & Robert H. Lurie Children's Hospital of Chicago is conducted through the Stanley Manne Children's Research Institute. The Manne Research Institute is focused on improving child health, transforming pediatric medicine and ensuring healthier futures through the relentless pursuit of knowledge. Lurie Children's is ranked as one of the nation's top children's hospitals in the U.S.News & World Report. It is the pediatric training ground for Northwestern University Feinberg School of Medicine. Last year, the hospital served more than 198,000 children from 50 states and 51 countries.

Media Contact

Julie Pesch
[email protected]
312-227-4261

https://www.luriechildrens.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

U of I Researchers Uncover Origins of Genetic Code Linked to Primitive Protein Structures

September 16, 2025

New Study Finds Problem Gambling Quadruples Suicide Risk in Youth After Four Years

September 16, 2025

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

September 16, 2025

Disease Experts Collaborate with Florida Museum of Natural History to Develop West Nile Virus Forecast

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

U of I Researchers Uncover Origins of Genetic Code Linked to Primitive Protein Structures

New Study Finds Problem Gambling Quadruples Suicide Risk in Youth After Four Years

Photocatalytic RNA Profiling Enables Multi-Omics Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.