• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

VTT developed cold-tolerant yeast strains for cider and wine makers to improve product quality

Bioengineer by Bioengineer
August 21, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The new cold-tolerant hybrid strains developed by VTT Technical Research Centre of Finland enable fermentation at lower and higher temperatures than before. Production at lower temperature reduces the risk of contamination and possibly allows reduction of the use of sulphates. Modulating temperatures can be used to fine-tune product aroma.

In 2015 VTT generated the first new lager brewing yeast strains in 500 years, and has now applied the knowledge obtained to create new yeast strains for the production of wine and cider. A key characteristic of these strains is that they can tolerate a wide range of temperatures from 10 to 37°C. Importantly, the low temperature range reduces the risk of contamination during fermentation, possibly allowing for reduced sulphate use. The tolerance to higher temperatures facilitates large-scale production in active dry yeast form. The wines and ciders produced with these strains are characterized by an increased aromatic complexity.

The ability of a yeast strain to ferment efficiently at low temperature is a desired feature in alcoholic fermentation. Cold fermentations have been used for centuries in the production of lager beer with the lager yeast Saccharomyces pastorianus. The ability of this species to ferment at low temperature is a result of it being a hybrid between an ale yeast and the cold-tolerant wild yeast Saccharomyces eubayanus.

Scientists at VTT have now demonstrated that this combination of parents can also be effectively used for wine and cider fermentations. A wine yeast strain was crossed with the cold-tolerant parent of the lager yeast and the hybrids were tested for cider and wine fermentation.

The results showed that due to the wider range of temperatures tolerated by these species the aromatic properties of the cider and wine can be modulated by varying the fermentation temperature. White wine and cider, for example, benefit from low-temperature fermentations, both for reduced risk of contamination but also for an improved aromatic profile. Undesirable flavours that are typical of the wild parent are eliminated after hybridization and large-scale production is facilitated.

This natural, non-GM approach can be used for tailor-made generation of new strains by careful selection of the parent strains with desirable features. After being successfully applied to beer, wine and cider production, this technique is now being assessed for its use in the baking industry, where yeast must survive for extended periods in frozen dough.

The following organizations have funded the research: EU's Marie Curie ITN Yeastcell-project, Academy of Finland and Alfred Kordelin Foundation.

###

References:

Krogerus, K., Magalhães, F., Vidgren, V. & Gibson, B. (2015) New lager yeast strains generated by interspecific hybridization. Journal of Industrial Microbiology and Biotechnology. http://link.springer.com/article/10.1007/s10295-015-1597-6

Magalhães F, Krogerus K, Vidgren V, Sandell M & Gibson B. (2017) Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Journal of Industrial Microbiology and Biotechnology. https://link.springer.com/article/10.1007/s10295-017-1947-7

Magalhães F, Krogerus K, Castillo S, Ortiz-Julien A, Dequin S & Gibson B. (2017) Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking. FEMS Yeast Research. DOI: 10.1093/femsyr/fox049

For more information, please contact:

VTT Technical Research Centre of Finland Ltd
Research Scientist Frederico Magalhães
https://www.researchgate.net/profile/Frederico_Magalhaes
tel. +358 40 136 6074, [email protected]

VTT Technical Research Centre of Finland Ltd

Principal Scientist Brian Gibson
https://www.researchgate.net/profile/Brian_Gibson
tel. +358 40 760 9291, [email protected]

Further information on VTT:

Milka Lahnalammi-Vesivalo
Communications Manager
358 40 5457 828
[email protected]

http://www.vtt.fi

VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We use our research and knowledge to provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions. VTT in social media: Twitter @VTTFinland, Facebook, LinkedIn, YouTube and Instagram.

Media Contact

Brian Gibson
[email protected]
358-407-609-291
@VTTFinland

http://www.vtt.fi/?lang=en

http://www.vttresearch.com/media/news/cold-tolerant-yeast-strains-for-cider-and-wine-makers-to-improve-product-quality

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.