• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

CAS scientists make autism advance using monkey model

Bioengineer by Bioengineer
August 18, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Autism is a common neurodevelopmental disorder characterized by impaired social communication, and restricted and repetitive behavior or interests. The reported prevalence of autism has been rising worldwide. Due to the application of large-scale exome sequencing in recent years, hundreds of novel autism-associated genes have been identified.

Mutations in SHANK3 remain one of the best characterized and replicated genetic defects associated with autism in humans. Genetically modified Shank3 mutant mice have served as valuable tools to dissect the pathophysiology of SHANK3 as related to autism. However, the significant evolutionary differences between the mouse and human brain and associated behaviors pose many challenges to assessing the translational value of mouse models in relation to humans, and highlight the need to develop non-human primate models.

Recently, researchers from Dr. ZHANG Yongqing's group at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS) found neurodevelopmental abnormality in a SHANK3-deficient non-human primate for the first time.

Using CRISPR/Cas9 to target the SHANK3 gene in the embryos of cynomolgus monkeys, the researchers successfully generated three mutant monkey offspring with various deleterious mutations in the SHANK3 gene. They analyzed the targeted mutations in various tissues from the three animals, as well as various brain regions of the deceased animals by immunochemical analysis.

Complete SHANK3 deficiency resulted in a significant reduction in postsynaptic proteins such as GluN2B, PSD95, mGluR5 and increased cytosolic localization of Homer1b/c. The number of mature neurons was markedly reduced but activated astrocytes were increased in the prefrontal cortex in the SHANK3-deficient brain. The neuropathology caused by the complete loss of SHANK3 in the monkey brain is remarkably distinct from findings reported from Shank3 knockout mice.

These findings indicate that SHANK3 is essential for the early development of primate brains. Understanding the novel role of SHANK3 in early brain development is critical to the autism field.

This work is a product of substantial collaboration between teams led by Drs. LI Xiaojiang (CAS), JIANG Yonghui (Duke University Medical Center), LU Youming (Huazhong University of Science and Technology), and Yuanxi Biotech Inc., Guangzhou. The research, entitled "Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate," has been published in advance online in Cell Research (doi:10.1038/cr.2017.95).

###

This project was supported by the Ministry of Science and Technology of China, the Chinese Academy of Sciences, and the National Natural Science Foundation of China.

Media Contact

Zhang Yongqing
[email protected]

http://english.cas.cn/

http://dx.doi.org/10.1038/cr.2017.95

Share12Tweet7Share2ShareShareShare1

Related Posts

Rewrite Cell death in microalgae resembles that in humans this news headline for the science magazine post

Rewrite Cell death in microalgae resembles that in humans this news headline for the science magazine post

September 29, 2025

Cornell Launches Groundbreaking Initiative to Decipher the Science of Menopause

September 29, 2025

Polymyxin B Kills by Energy-Driven Membrane Disruption

September 29, 2025

Omega-3 Fatty Acids Influence Mammary Gland Development and Lipogenesis through Gαs-Driven cAMP–EPAC Signaling Pathway

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    57 shares
    Share 23 Tweet 14
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST Study Suggests Cancer Cell Nuclear Hypertrophy May Inhibit Tumor Spread

Compressive Stress Influences Bone Cell Growth

The headline “The rise in early-onset cancer in the US population—more apparent than real” could be rewritten as: “Apparent Increase in Early-Onset Cancer in the US: Separating Perception from Reality”

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.