• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists compare soil microbes in no-till, conventional tilling systems of Pacific Northwest farms

Bioengineer by Bioengineer
August 17, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The American Phytopathological Society

St. Paul, Minn. (August 2017)–In recent decades, growers have increasingly been adopting no-till farming to reduce soil erosion and decrease fuel, labor, and inputs.

Wheat farmers of the inland Pacific Northwest, however, have been slower to adopt no-till, in part because–at least in the short term–they see more incidence of fungal soil-borne diseases like Rhizoctonia root rot when crop residues accumulate in the field. However, over longer periods of time, researchers located at Washington State University and the University of Idaho saw these fungal disease outbreaks decrease after farmers continuously practiced no-till over multiple seasons. This begged a research question: Is this due to some form of natural suppression by microbial communities?

The study of Yin et al, published in Phytobiomes, a new and fully open-access journal of The American Phytopathological Society, brings the scientific community one step closer to the answer, plus paves the way for further research.

In their article, titled "Bacterial Communities on Wheat Grown Under Long-Term Conventional Tillage and No-Till in the Pacific Northwest of the United States," Paulitz and colleagues did side-by-side comparisons of microbial communities in long-term, no-till plots, along with adjacent plots under conventional tillage on wheat farms in Washington and Idaho. To achieve this, they used Next Generation Sequencing (NGS), which can generate thousands of DNA sequences from a single soil sample, and the DNA can be used to identify the bacteria.

Over two years, bulk and rhizosphere soil samples were taken from two locations in each of the no-till and conventional plots. The samples were then evaluated for differences in the bacterial communities, particularly those which might explain the occurrence of fungal diseases.

"This is the first time next-generation sequencing was used to get such an in-depth look at bacterial communities in the inland Pacific Northwest wheat cropping system," said Paulitz, corresponding author of the article and Research Plant Pathologist at USDA-ARS in Pullman, Washington.

Through the study, Paulitz and fellow researchers found that these bacterial communities were dynamic from year to year, as well as location to location. And while microbes in the Bacteroidetes family were more frequently found in conventional tillage systems, bacterial families were generally more affected by the position of the sample.

"We found very few shifts of community and bacterial groups that could be explained by tillage, said Paulitz. "What made a bigger difference was where the sample was taken–in the soil surrounding the plant or from the surface of the root. These two communities were very different."

In general, families of bacteria regarded as fast growing such as Oxalobacteriaceae, Pseudomonadaceae, and Cytophagaceae, as well as members of the phylum Proteobacteria, were more abundant in the rhizosphere soil samples.

Those in the families of bacteria that are slower growing, such as Gaiellaceae, Acidobacteria and Gemmatimonadetes were generally more abundant in the bulk soil samples.

This study led to a new hypothesis, that fungal communities are more influenced by changes in tillage, because they are responsible for degrading the crop residue left on the surface with no-till.

Paulitz sees this research as important, because soil health can be a critical component in next-generation practices for sustainable agriculture.

"Instead of relying on inputs like fungicides, can we manage disease by using rotation and other cultural techniques? Using the latest techniques, we can now look at the microbiome to begin defining and building soil health."

###

About Phytobiomes

Phytobiomes is a fully open access, transdisciplinary journal of sustainable plant productivity published by The American Phytopathological Society. Phytobiomes publishes original research about organisms and communities and their interaction with plants in any ecosystem. It also provides an international platform for fundamental, translational, and integrated research that accomplishes the overarching objective of offering a new vision for agriculture in which sustainable crop productivity is achieved through a systems-level understanding of the diverse interacting components of the phytobiome. These components include plant pathogens, insects, soil, microbes, weeds, biochemistry, climate, and many others. Follow us on Twitter @PhytobiomesJ.

Media Contact

Phil Bogdan
[email protected]
651-994-3859

http://www.apsnet.org

Related Journal Article

http://dx.doi.org/10.1094/PBIOMES-09-16-0008-R

Share12Tweet7Share2ShareShareShare1

Related Posts

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Sheathed Flagellum Structures Explain Vibrio cholerae Motility

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025

Electrostatic Shifts Drive Exocyst Subunit Diversification

October 31, 2025

Breakthrough Study Reveals Innovative Method to Target Cell Receptors, Paving the Way for Expanded Treatment Options

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting α2-Integrin to Combat Osteosarcoma Bone Destruction

Global Research Uncovers the Role of Bacteria in Shaping Lake and Reservoir Health

Comparing Health Worker and Non-Worker Education on Contraception

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.