• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Noninvasive detection for early stage cancers from circulating DNA

Bioengineer by Bioengineer
August 16, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new DNA sequencing-based method could help noninvasively detect early stage cancers by analyzing fragments of genetic material circulating in the blood that originate from tumors. The findings may pave the way to more useful screening and management tools for patients with cancer. More than 14 million people globally are diagnosed with cancer every year, and most cases aren't detected until the disease has progressed to late stages with few treatment options. As such, early detection and clinical interventions for colorectal, ovarian, lung, and breast cancers might save as many as one million lives annually. Jillian Phallen and colleagues developed an ultrasensitive approach to identify molecular signatures of cancer from small pieces of genetic material released by cancer cells into the bloodstream called circulating tumor DNA (ctDNA). Plasma from 194 patients with colorectal, ovarian, lung, and breast cancers frequently contained ctDNA with mutations in one or more of 58 so-called cancer driver genes, unlike samples from 44 healthy individuals. Because ctDNA comprises a tiny fraction of the total DNA present in the blood (called cell-free DNA, or cfDNA), the scientists developed a new sample-preparation and computational analysis pipeline, which they dubbed TEC-Seq. By sequencing every molecule tens of thousands of times, the researchers picked out ctDNA and distinguished between cancer-associated alterations and normal variation in cfDNA with a false positive rate of fewer than one per three million DNA base pairs. On average, cancer patients had over four times more cfDNA in their blood overall as compared to healthy subjects, and increased levels correlated with more aggressive disease. The authors say analyzing a broader panel of driver genes may further boost the sensitivity and specificity of TEC-Seq.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

http://dx.doi.org/10.1126/scitranslmed.aan2415

Share14Tweet7Share2ShareShareShare1

Related Posts

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

September 16, 2025
blank

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

September 16, 2025

New Research Uncovers How Message Types Inspire People to Take Conservation Action

September 16, 2025

Increased Brain Amyloid Found in Older Adults with Parkinson’s Disease Without Dementia

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

New Research Uncovers How Message Types Inspire People to Take Conservation Action

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.