• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cancer-fighting T cells are smarter, stronger than experts thought

Bioengineer by Bioengineer
August 14, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yinnian Feng/Vanderbilt University

Scientists studying the body's cancer-fighting T cells have a serious problem: When they culture them in the lab, the T cells sit around at equilibrium, waiting to bump into cancerous cells. But that's not how they operate inside the body. There, they are motorized little bloodhounds, actively seeking out infected cells.

In this active mode, they can find cells showing much less evidence of cancer than researchers previously thought, Vanderbilt University Professor of Chemical and Biomolecular Engineering Matt Lang, Ph.D. student Yinnian Feng and their Harvard University collaborators found.

Their work, which represents a leap toward developing killer T cells to attack tumors, appears in today's Proceedings of the National Academy of Sciences.

Titled "Mechanosensing drives acuity of αβ T cell recognition," it's the result of more than 1,000 individual experiments aimed at triggering T cells when they are given a humanly undetectable push.

The research promises to change what immunologists are looking for, because it demonstrates that T cells can trigger killing of cells with far less evidence of infectious pathogens, physical damage and malignant transformations than researchers believed, Lang said. Now, researchers will look for T cells that demonstrate potential for the strongest binding when they're flung at damaged cells.

"We can, for the first time, pick the closer on the baseball team who can reliably pitch fastballs," Lang said. "Which T cell do you pick, which one do you put back into the patient to fight their disease? Maybe you get lucky and pick the right one. With these new tests, we can measure the interaction under the native, energized state. We've found the sweet spot for reliably triggering them."

He said the research has personal significance to him because his wife has fought thyroid cancer for years–she is currently cancer-free–and he's lost other relatives to cancer in quick succession.

Lang's team collaborated with Harvard's Dana-Farber Cancer Institute, where researchers have been studying T cell receptors that distinguish abnormal cells from normal cells since the early 1980s. Dr. Ellis Reinherz said he worked with Lang when the engineering professor was at MIT, just prior to Vanderbilt. They used optical tweezers–highly focused laser beams–to help characterize the T cells' structure and perform single-molecule analyses.

"What Matt has shown here is that, in the presence of force, the ability of a T cell to recognize its target is dramatically enhanced," Reinherz said. He warned against treating the new research finding as a panacea, but characterized it as enormously important fundamental science.

"Coming down the pike, this sort of technology will be useful in honing our way of best identifying tumor antigens and developing rational methods of discerning T cell receptors one from another on bond strength," Reinherz said. "We may be able to improve the quality we're generating, characterize them and define with great authenticity pathogen-derived responses.

"Our work is fundamental to developing antigen-specific, killer T-cells."

Feng and Lang performed their experiments using optical tweezers to pick up microscopic spheres and coat them with the same peptides as found on diseased cells. They would then place the spheres onto T cells.

With no force, the T cells were thought to go through their typical lab routine of lackadaisically sniffing out a peptide, then another, then another in a process requiring hundreds or even thousands of binding events before their receptors bound to enough peptides to activate the immune response.

Then Feng and Lang applied 10 piconewtons of force to the T cell, equivalent to the gravitational force exerted by dropping 1/1,000th of an eyelash. A special dye applied to the T cell immediately revealed an increase of intracellular calcium, which shows that it is activated. Feng and Lang began removing a peptide at a time as their experiments progressed and learned that, with this tiny amount of force, the T cell can do its job when contacting as few as two peptides.

"With the very precise microscopes we have, we didn't see repetitive binding. We saw a single binding event," Lang said. "This paper is telling us about mechanism, about how the system actually works. It's basically saying that we're dealing with a mechanosensor that requires force to be activated. Strategically, it's changing what we should be looking for."

The team's work could help with designing strategies for T cell therapies, said Dr. Christian S. Hinrichs, an investigator with the National Cancer Institute.

"In the emerging and very promising field of T cell therapy, these findings help us understand at a very basic level how therapeutic T cells are triggered to attack their targets," he said.

###

The research was supported by NIH Grants R01AI100643, R01AI37581, P01GM047467 and SU2C-AACR-DT1314.

Media Contact

Heidi Hall
[email protected]
615-322-6614
@vanderbiltu

http://news.vanderbilt.edu/research/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1703559114

Share12Tweet8Share2ShareShareShare2

Related Posts

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.