• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sweet! Sugar-coated probe yields better acid test

Bioengineer by Bioengineer
August 11, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Haiying Liu/Michigan Tech

The human body is engaged in a constant tightrope walk to maintain the right pH, because when our cells' acid-alkaline balance goes wrong, it can go wrong in a big way.

Abnormal pH–in particular, abnormally low, acid pH–is a marker for maladies ranging from cystic fibrosis, stroke and rheumatoid arthritis to cancer and Alzheimer's. Now, Michigan Technological University chemist Haiying Liu has developed new tools that could make it much easier to detect low pH in living cells. The discovery is the focus of a new study funded by the National Institute of General Medical Sciences of the National Institutes of Health and published in ACS Sensors.

To measure pH, researchers and medical personnel use fluorescent dyes, called probes, that glow in acidic conditions when activated by fluorescent light. The probes are used for diagnostic imaging–to visualize blood vessels and the digestive tract, for example–and they can help surgeons remove diseased tissue, including tumors. However, these probes are not perfect.

The problems stem from the high-energy light they need to fluoresce. Light at these wavelengths not only switches on the probe; it can also cause biological structures to shine like glow sticks. This autoluminescence makes it hard to tell the difference between the probe and surrounding tissues. High-energy light can even damage cells and cause the probe's initial shine to fade into darkness, a process called photobleaching.

To fix these issues, you would need a probe that works in low-energy, near-infrared light. So chemistry professor Liu and his team developed two of them.

These probes have a lot going for them. They aren't subject to photobleaching and autoluminescence. Plus, since near-infrared light can penetrate deep into tissues, they could give scientists and physicians a better look inside the body.

The chemistry of the two probes was inspired by rhodamine, which has been used in biotech applications for decades. "But the problem with rhodamine is that it can damage cells," Liu said. "We needed a probe that was compatible with living tissues."

So, Liu's team sweetened its next-generation probes with a simple sugar found in many fruits: mannose. "We introduced the sugar to make the probes water soluble and less toxic," said Liu. "That helps it penetrate cell membranes and makes it much friendlier."

Liu's team designed its probes to emit light in two different ways. First, they fluoresce in the conventional way when exposed to near-infrared light. In addition, they glow in the near-infrared spectrum at even lower energies, thanks to a different type of chemical response called single-photon frequency up-conversion luminescence (FUCL).

Tests under both types of light have been promising, showing that both probes are highly sensitive to pH and very gentle to living cells, even at high concentrations. Though the probes are similar chemically, one is slightly more sensitive to pH in cell cultures.

Next, Liu will study how well they detect low pH in mice, in hopes that the probes can help advance medical science and even save lives.

###

Media Contact

Allison Mills
[email protected]
906-487-2343
@michigantech

http://www.mtu.edu

Original Source

http://www.mtu.edu/news/stories/2017/august/sweet-sugar-coated-probe-yields-better-acid-test.html http://dx.doi.org/10.1021/acssensors.7b00137

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

HBB Mutation Frequency in Nigerian, Zimbabwean Populations

November 16, 2025
blank

Characterizing UGT Family: Key Role in Blueberry Development

November 16, 2025

LMNB2 Modulates p38 MAPK to Influence Esophageal Cancer

November 16, 2025

Tracing Canine Hemoplasma in Türkiye: Molecular Insights

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Factors Influencing Holistic Nursing Competence in Eldercare

PARylation Stabilizes AFF1 for Transcription Recovery Post-DNA Damage

Distinct Plasma Proteomic Profiles in Mouse Strains

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.