• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How dietary fiber helps the intestines maintain health

Bioengineer by Bioengineer
August 10, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(SACRAMENTO, Calif.) — UC Davis Health researchers have discovered how by-products of the digestion of dietary fiber by gut microbes act as the right fuel to help intestinal cells maintain gut health.

The research, published August 11 in the journal Science, is important because it identifies a potential therapeutic target for rebalancing gut microbiota and adds to a growing body of knowledge on the complex interplay between gut microbiota and dietary fiber.

An accompanying Insights / Perspectives article in the same issue of the journal describes gut microbes as "partners" in the body's defense against potential infectious agents, such as Salmonella.

"Our research suggests that one of the best approaches to maintaining gut health might be to feed the beneficial microbes in our intestines dietary fiber, their preferred source of sustenance," said Andreas Bäumler, professor of medical microbiology and immunology at UC Davis Health and senior author of the study.

"While it is known that the gut is the site of constant turf wars between microbes, our research suggests that signals generated by beneficial microbes drive the intestinal tract to limit resources that could lead to an expansion of potentially harmful microbes," he said.

Resident gut microbes metabolize indigestible dietary fiber to produce short-chain fatty acids, which signal cells lining the large bowel to maximize oxygen consumption, thereby limiting the amount of oxygen diffusing into the gut lumen (the open space within the intestine that comes into direct contact with digested food.)

"Interestingly, the beneficial gut bacteria that are able to breakdown fiber don't survive in an environment rich in oxygen, which means that our microbiota and intestinal cells work together to promote a virtuous cycle that maintains gut health," Mariana X. Byndloss, assistant project scientist and first author on the study.

The new research identified the host receptor peroxisome proliferator receptor gamma (PPARg) as the regulator responsible for maintaining this cycle of protection.

"When this host signaling pathway malfunctions, it leads to increased oxygen levels in the gut lumen," Bäumler said. "These higher oxygen levels make us more susceptible to aerobic enteric pathogens such as Salmonella or Escherichia coli, which use oxygen to edge out competing beneficial microbes."

###

Other authors of the paper, entitled "Microbiota-activated PPAR-γ-signaling inhibits dysbiotic Enterobacteriaceae expansion," include Erin E. Olsan, Fabian Rivera-Chávez, Connor R. Tiffany, Stephanie A. Cevallos, Kristen Lokken, Teresa P. Torres, Austin J. Byndloss and Franziska Faber, Yandong Gao, Yael Litvak, Christopher A. Lopez, Gege Xu, Eleonora Napol4, Cecilia Giulivi and Renée M.Tsolis, Alexander Revzin and Carlito Lebrilla.

The research was supported with grants from the National Institutes of Health AI060555, TR001861, AI112241, DK087307, AI109799, AI112258, AI112949, AI096528, AI112445, AI112949 and AI114922.

MEDIA CONTACTS:

Carole Gan, Public Affairs & Marketing: 916-734-9047
Email: [email protected]

Public Affairs
UC Davis Health
4900 Broadway, Suite 1200
Sacramento, CA 95820
Phone: 916-734-9040
Fax: 916-734-9066
E-mail: [email protected]
Web: http://www.ucdmc.ucdavis.edu/newsroom/

Media Contact

Carole Gan
[email protected]
916-734-9047
@UCDavisHealth

http://www.ucdmc.ucdavis.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Mapping the AP2/ERF Gene Family in Cinnamomum Camphora

Mapping the AP2/ERF Gene Family in Cinnamomum Camphora

October 30, 2025
Precipitation Legacy Boosts Soil Microbes, Enhances Plant Drought Response

Precipitation Legacy Boosts Soil Microbes, Enhances Plant Drought Response

October 30, 2025

How Soil ‘Memory’ Enhances Plant Resilience to Drought

October 30, 2025

Zinc Boosts Osmolyte and Lipid Profiles in Fungi

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1291 shares
    Share 516 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Food Addiction: Balancing Harm and Restraint

Evaluating Polish FATCOD-A: Nursing Perspectives on End-of-Life Care

Plasma Testosterone’s Impact on Diabetic Nephropathy Progression

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.