• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists unearth cell ‘checkpoint’ that stops allergic diseases

Bioengineer by Bioengineer
August 9, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from Trinity College Dublin have made a significant breakthrough in understanding the regulation of immune cells that play a pivotal role in allergic diseases such as asthma and eczema. They have identified a 'checkpoint' manned by these immune cells that, if barred, can halt the development of the lung inflammation associated with allergies.

The discovery now provides a potential new target for drug developers to home in on. In theory, a drug that successfully regulates this newly pinpointed 'checkpoint' would better control overly aggressive allergic responses.

The team of scientists was led by Science Foundation Ireland Stokes Professor of Translational Immunology, Padraic Fallon, of the School of Medicine in the Trinity Biomedical Sciences Institute. The work has just been published in the leading peer-reviewed medical journal The Journal of Experimental Medicine.

Allergic conditions, such as asthma or eczema, arise when the immune system misfires and sparks an uncontrolled response to common allergens, such as house dust mites. In asthma this aberrant immune response leads to immune cells infiltrating the lungs, where they cause inflammation that affects lung function and leads to difficulties in breathing.

One key cell that is an early initiator of this allergic inflammation is known as a 'type 2 innate lymphoid cell' (ILC2). These cells instruct others, known as 'Th2 cells', to drive the cascade of inflammation in the lungs that leads to the development of asthma.

In this study, using a mouse transgenic approach, the scientists demonstrated that ILC2s express a checkpoint molecule, known as'PD-L1', that functions to control the expansion of allergy-inducing Th2 cells and the development of allergic pulmonary and gut tissue inflammation.

Professor Fallon said: "This identification of an early stage cellular checkpoint that can act as a break on allergic responses has important implications for the development of new therapeutic approaches for asthma and other allergic diseases."

First author of the paper, Dr Christian Schwartz, a European Molecular Biology Organization Long Term Fellow in Professor Fallon's group, added: "It is fascinating that a small cell population such as the ILC2s can regulate the expansion of Th2 cells and thereby shape the whole outcome of an immune response – be it beneficial in case of parasitic infections, or detrimental as in the case of allergic responses."

"I believe the more we learn about these delicate cellular networks the more possibilities we will create for intervention."

###

The National Children's Research Centre, Science Foundation Ireland and the The Wellcome Trust supported Professor Fallon's research. Dr Schwartz is a recipient of a European Molecular Biology Organization Long Term Fellowship.

Media Contact

Yolanda Kennedy
[email protected]
353-863-860-638
@tcddublin

http://www.tcd.ie/

http://dx.doi.org/10.1084/jem.20170051

Share12Tweet7Share2ShareShareShare1

Related Posts

Two Major Advances in the Evolution of Bipedalism

Two Major Advances in the Evolution of Bipedalism

August 27, 2025
Older Species Usually Have Large Ranges—Except on Islands, Study Finds

Older Species Usually Have Large Ranges—Except on Islands, Study Finds

August 27, 2025

How Indirect Effects Shape the Course of Evolution

August 27, 2025

Enhancing Pig Genomic Prediction with Integrated Data

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Eating Disorders in Bariatric Surgery Patients

Breakthrough Partial Heart Transplant Offers Hope for Congenital Heart Disease

Breakthrough in Origin of Life: Chemists Reveal How RNA Could Have Begun Synthesizing Proteins on Early Earth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.