• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newly discovered pathway for pain processing could lead to new treatments

Bioengineer by Bioengineer
August 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The discovery of a new biological pathway involved in pain processing offers hope of using existing cancer drugs to replace the use of opioids in chronic pain treatment, according to scientists at McGill University.

Because many therapeutic options, such as opioids, for patients with chronic pain carry the risk of addiction and undesirable side effects, this breakthrough offers promising lines of research into chronic pain treatment, says Luda Diatchenko, professor at McGill's Faculty of Dentistry and co-lead author of the new study

The scientists discovered that EGFR blockers, routinely given to lung cancer patients to inhibit tumour growth, were as potent analgesics as morphine in mouse models of inflammatory and chronic pain.

"We now need to answer two questions: Is this really effective for human chronic pain? And what are the side effects associated with the dosage needed to efficiently treat it?" says Diatchenko, who holds the Canada Excellence Research Chair in Human Pain Genetics.

Repurposing existing drugs to treat diseases other than those they were designed for can be advantageous, because the toxicity of these compounds is well understood, making them a fast and relatively inexpensive way to develop new treatments.

If these cancer therapeutics don't turn out to be useful for pain management, they could nevertheless be used as the foundation to develop new drugs. "By re-engineering or tweaking these drugs, the road to getting to a useful pain treatment will be much, much shorter," explains Jeffrey Mogil, professor at McGill's Department of Psychology and the study's co-lead author.

The research, published in The Journal of Clinical Investigation, describes the crucial role in pain of a protein known as epidermal growth factor receptor (EGFR).

"This is quite exciting as EGFR is one of the most studied proteins in all of biomedicine because of its important role in cancer. But aside from a few clinical case studies, a role for EGFR in pain has never been shown", adds Mogil, who is also the director of the Alan Edwards Centre for Research on Pain.

The researchers believe the EGFR pain pathway they found in mice and fruit flies is relevant to humans because of genetic results also reported in the paper on human cohorts with chronic facial pain, which linked two genes in the EGFR pathway.

"We know this pathway is relevant in humans," Diatchenko says. "This discovery is very exciting and important; it's really going to help us extend our knowledge about the molecular pathophysiology of chronic pain."

The scientists hope their findings will lead to clinical trials in order to assess the potential of EGFR inhibitors used in cancer therapy as pain management therapeutics.

###

Epiregulin and EGFR interactions are involved in pain processing, by Loren J. Martin et al., Journal of Clinical Investigation

Media Contact

Justin Dupuis
[email protected]
514-398-6751
@McGillU

http://www.mcgill.ca

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New 18F-labeled Compound Targets COX-2 Imaging

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.