• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UM postdoc fellow takes advantage of cold snap to study natural selection in lizards

Bioengineer by Bioengineer
August 4, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MISSOULA – Research by University of Montana postdoctoral fellow Shane Campbell-Staton appears in the latest issue of the journal Science.

Campbell-Staton, a National Science Foundation Postdoctoral Fellow, was the lead author of a report titled "Winter storms drives rapid phenotypic, regulatory and genomic shifts in the green anole lizard." His research focused on the effects of natural selection in green anole lizards after an extreme cold weather event in the southeastern United States during the winter of 2013-14.

The study was unique, Campbell-Staton said, because the unpredictable nature of extreme weather events makes it difficult to study natural selection responses to such events.

"Unless you happen to have data before such an event and can get data directly after, it can be very difficult to test hypotheses about their impacts," Campbell-Staton said. "Our study is unique in that we had data before and after this extreme weather event, and we were able to measure selection at three levels: whole animal function, gene expression and genetic variation. These data give us a very detailed look at how extreme events affect populations in the wild."

The study found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations.

"We conclude that extreme winter events can rapidly produce strong shifts in natural populations at multiple biological levels," he said. "The fact that we saw such a strong shift in the southern population, in their function, gene expression and allele frequencies, within the course of a single calendar year was quite surprising."

Campbell-Staton said the research raises larger questions about the long-term consequences of extreme weather events for these populations.

"When most people think about climate change, they think about the gradual warming our planet is undergoing," Campbell-Staton said.

"However another major symptom of modern climate change is the increase in frequency and magnitude of extreme weather events like cold snaps, heat waves, droughts, etc. Although brief in nature, these types of events can have profound effects on natural populations for many generations.

"We know that selection occurs at a cost: death," he said. "It's possible that the individuals that died as a result of this cold snap may have had the genetic and physiological tools to survive a drought or a heat wave, and now those lineages are lost. We still have a lot to learn about how predicted patterns of extreme weather will impact biodiversity."

###

Find the article online at http://science.sciencemag.org/content/357/6350/495.

Media Contact

Shane Campbell-Staton
[email protected]
406-243-5122

http://www.umt.edu

http://bit.ly/2uc08nU

Share12Tweet7Share2ShareShareShare1

Related Posts

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Sheathed Flagellum Structures Explain Vibrio cholerae Motility

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025

Electrostatic Shifts Drive Exocyst Subunit Diversification

October 31, 2025

Breakthrough Study Reveals Innovative Method to Target Cell Receptors, Paving the Way for Expanded Treatment Options

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Research Uncovers the Role of Bacteria in Shaping Lake and Reservoir Health

Comparing Health Worker and Non-Worker Education on Contraception

Creating Human Kidney Organoids for Porcine Transplants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.