• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Smaller, smarter, softer robotic arm for endoscopic surgery

Bioengineer by Bioengineer
August 2, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Harvard University

Flexible endoscopes can snake through narrow passages to treat difficult to reach areas of the body. However, once they arrive at their target, these devices rely on rigid surgical tools to manipulate or remove tissue. These tools offer surgeons reduced dexterity and sensing, limiting the current therapeutic capabilities of the endoscope.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a hybrid rigid-soft robotic arm for endoscopes with integrated sensing, flexibility, and multiple degrees of freedom. This arm — built using a manufacturing paradigm based on pop-up fabrication and soft lithography — lies flat on an endoscope until it arrives at the desired spot, then pops up to assist in surgical procedures.

The research is described in Advanced Materials Technologies.

Soft robots are so promising for surgical applications because they can match the stiffness of the body, meaning they won't accidentally puncture or tear tissue. However, at small scales, soft materials cannot generate enough force to perform surgical tasks.

"At the millimeter scale, a soft device becomes so soft that it can't damage tissue but it also can't manipulate the tissue in any meaningful way," said Tommaso Ranzani, a postdoctoral fellow at SEAS and the Wyss Institute and coauthor of the paper. "That limits the application of soft microsystems for performing therapy. The question is, how can we develop soft robots that are still able to generate the necessary forces without compromising safety."

Inspired by biology, the team developed a hybrid model that used a rigid skeleton surrounded by soft materials. The manufacturing method drew on previous work in origami-inspired, pop-up fabrication, developed by Robert Wood, the Charles River Professor of Engineering and Applied Sciences.

Wood coauthored the paper and is a Core Faculty Member of the Wyss Institute.

Previous pop-up manufacturing techniques — such as those used with the Robobees — rely on actuation methods that require high voltages or temperatures to operate, something that wouldn't be safe in a surgical tool directly manipulating biological tissues and organs.

So, the team integrated soft actuators into the pop-up system.

"We found that by integrating soft fluidic microactuators into the rigid pop-up structures, we could create soft pop-up mechanisms that increased the performance of the actuators in terms of the force output and the predictability and controllability of the motion," said Sheila Russo, postdoctoral fellow at SEAS and Wyss and lead author of the paper. "The idea behind this technology is basically to obtain the best of both worlds by combining soft robotic technologies with origami-inspired rigid structures. Using this fabrication method, we were able to design a device that can lie flat when the endoscope is navigating to the surgical area, and when the surgeon reaches the area they want to operate on, they can deploy a soft system that can safely and effectively interact with tissue."

The soft actuators are powered by water. They are connected to the rigid components with an irreversible chemical bond, without the need of any adhesive. The team demonstrated the integration of simple capacitive sensing that can be used to measure forces applied to the tissue and to give the surgeon a sense of where the arm is and how it's moving. The fabrication method allows for bulk manufacturing, which is important for medical devices, and allows for increased levels of complexity for more sensing or actuation. Furthermore, all materials used are biocompatible.

The arm is also equipped with a suction cup — inspired by octopus tentacles — to safely interact with tissue. The team tested the device ex vivo, simulating a complicated endoscopic procedure on pig tissue. The arm successfully manipulated the tissue safely.

"The ability to seamlessly integrate gentle yet effective actuation into millimeter-scale deployable mechanisms fits naturally with a host of surgical procedures," said Wood. "We are focused on some of the more challenging endoscopic techniques where tool dexterity and sensor feedback are at a premium and can potentially make the difference between success and failure."

The researchers demonstrated that the device could be scaled down to 1 millimeter, which would allow it to be used in even tighter endoscopic procedures, such as in lungs or the brain.

Next, the researchers hope to test the device in vivo.

"Our technology paves the way to design and develop smaller, smarter, softer robots for biomedical applications," said Russo.

###

The paper was coauthored by Conor Walsh, the John L. Loeb Associate Professor of Engineering and Applied Sciences and Core Faculty Member of the Wyss Institute.

The research was supported by the DARPA "Atoms to Product" program and the Wyss Institute for Biologically Inspired Engineering.

Media Contact

Leah Burrows
[email protected]
617-496-1351
@hseas

http://www.seas.harvard.edu/

Original Source

https://www.seas.harvard.edu/news/2017/08/smaller-smarter-softer-robotic-arm-for-endoscopic-surgery http://dx.doi.org/10.1002/admt.201700135

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025
blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.