• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New drug may treat and limit progression of Parkinson’s disease

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BINGHAMTON, NY – Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

Symptoms of Parkinson's disease are commonly managed using a selective dopamine receptor agonists. While these drugs are useful in early-stage Parkinson's, they tend to lose efficacy in later disease stages. As important, currently marketed drugs do not appear to modify disease progression. A research team including Binghamton University psychology professor Chris Bishop and former graduate student David Lindenbach recently employed a preclinical model of Parkinson's disease to compare the effects of the dopamine agonist ropinirole to their new drug, known as D-512. Results demonstrated that D-512 was more efficacious than ropinirole in treating the symptoms of Parkinson's disease while also prolonging the time window in which the animals showed benefits. These findings followed on the heels of prior work by this collaborative group which demonstrated that D-512 may also protect again the progression of Parkinson's disease.

"A major issue for Parkinson's disease patients is the need to take multiple medications, multiple times per day. So we were quite astounded to discover that our new compound, D-512, was superior to the widely-used drug, ropinirole, in terms of maximal symptom relief and duration of action," said Lidenbach.

The researchers also noted that D-512 may have fewer side effects than current medications. When patients take anti-parkinsonian drugs, over time they develop hyperkinetic movements that are hard to control, called dyskinesia. Coupled with D-512's beneficial effects on motor symptoms, they argue that it therapeutic features are highly desirable.

"What you have is a better therapeutic index with our drug versus the current medication. And when you couple that with the fact that it's seemingly multifunctional…then what we have is a compound that just isn't currently available to Parkinson's patients but that we think has a lot of promise," said Bishop.

"D-512 is unique because it not only treats the symptoms of Parkinson's disease, but the molecule itself is an antioxidant," said Lindenbach. "This antioxidant property is important because a major cause of Parkinson's disease appears to be excessive oxidative stress is a small group of movement-facilitating brain cells."

The researchers are currently at a pre-clinical phase. Their goals are two-fold: to understand how D-512 actually provides neural protection and therapeutic relief, while also looking at different models of Parkinson's disease that will translate into the clinic.

"There are some intermediate steps that we may be involved in. I think one of these is determining whether this compound works in later stages to slow down the disease progression. It seems to work very well if you give it really early, before the disease takes hold — but looking at it at later time points and determining whether it can slow the disease down once it's really taken hold, also has important implications," said Bishop.

The paper, "D-512, a novel dopamine D2 / D3 receptor agonist, demonstrates superior anti-parkinsonian efficacy over ropinirole in parkinsonian rats," was published in The British Journal of Pharmacology.

###

Media Contact

Christopher Bishop
[email protected]
607-777-3410
@binghamtonu

http://www.binghamton.edu

http://dx.doi.org/10.1111/bph.13937

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.