• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists map the distribution of antimicrobial resistance across Chinese major cities

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by AN Xinli

Global emergence of antimicrobial resistance threatens therapies that combat infections by bacterial pathogens. Resistance genes detected in city sewage may serve as a proxy for the resistance burden of their urban populations. Professor ZHU Yongguan from the Institute of Urban Environment of the Chinese Academy of Sciences and his collaborators recently conducted a nationwide survey of antimicrobial resistance elements in China's urban sewage and showed that the distribution of antimicrobial-resistant genes (ARG) was characterized by the well-known "Hu Huanyong line," which delineates a striking difference in the distribution of China's population. This demonstrated that the emergence of ARGs is driven by human activity.

A total of over 116 urban sewage samples from 32 wastewater treatment plants across 17 Chinese major cities were investigated in this study. Urban sewage was found to possess high levels of antimicrobial resistance genes – around 1011-1012copies per liter. The occurrence of antimicrobial resistance in urban sewage has a distinct seasonal pattern and the antibiotic resistome is extensively shared in urban sewage across China.

This study revealed that municipal sewage harbors diverse and abundant resistance genes. In total, 381 different resistance genes conferring resistance to almost all antibiotics were detected and these genes were extensively shared across China, with no geographical clustering, highlighting that municipal sewage could be a major conduit for transferring antibiotic resistance genes into the environment.

Adults harbor significant quantities of resistance genes in their gut microbiome, primarily owing to antibiotic usage in infection treatment. In particular, the frequent presence of multi-antibiotic resistant "superbugs" in human feces predicts a return to the pre-antibiotic era, where a growing number of infections can no longer be treated using the current arsenal of drugs.

Urban sewage is a catchment receiving antibiotic-resistant bacteria from the gastrointestinal tracts of tens to hundreds of thousands of urban residents. The antimicrobial resistance distribution detected in urban sewage can serve as a proxy for the resistance burden map of their urban populations. The research data demonstrated that urban sewage is potentially a major conduit for dissemination of anthropogenically derived antibiotic resistance into various environmental compartments.

###

This work provides a baseline for investigating the environmental dissemination of resistance elements, and raises the possibility of using the abundance of ARGs in sewage as a tool for antibiotic stewardship.

These findings were recently published in Microbiome (Zhu, Y.-G., et al. 2017). "Metagenomics of urban sewage identifies an extensively shared antibiotic resistomein China," Microbiome 5: 84, DOI 10.1186/s40168-017-0298-y, https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0298-y). This study was conducted with collaborators from the University of Hong Kong, Zhejiang University and Macquarie University.

This study was financially supported by the National Key Research and Development Plan, the Natural Science Foundation of China, the Knowledge Innovation Program of the CAS, the International Science & Technology Cooperation Program of China, and the Youth Innovation Promotion Association of CAS.

Media Contact

ZHU Yongguan
[email protected]

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1186/s40168-017-0298-y

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Sexual Dimorphism in Serum Metabolites Post-Exercise

November 7, 2025
New Study Reveals How Variations Between Preclinical Models and Humans Can Predict Drug Toxicity

New Study Reveals How Variations Between Preclinical Models and Humans Can Predict Drug Toxicity

November 7, 2025

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025

Woodpeckers Grunt Like Tennis Stars While Drilling, Scientists Discover

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sexual Dimorphism in Serum Metabolites Post-Exercise

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.