• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Engineering on a blue streak

Bioengineer by Bioengineer
July 28, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Abhishek Shete/ University of Delaware

A pair of engineers at the University of Delaware has developed a process to form interwoven polymer networks more easily, quickly and sustainably than traditional methods allow. Their secret ingredient? Blue light.

Abhishek Shete, graduate research assistant in materials science and engineering, and Christopher Kloxin, assistant professor in materials science and engineering and chemical and biomolecular engineering, describe their method in a paper featured on the cover of the 24th issue of Polymer Chemistry. The paper is titled "One-pot blue-light triggered tough interpenetrating polymeric network (IPN) using CuAAC and methacrylate reactions."

Polymers, which are materials made from chains of molecules, are found in everything from food to clothing to cars. Two or more types of polymer chains with different individual properties can also be linked together to form interpenetrating polymeric networks, materials that often combine favorable mechanical properties from each polymer such as high strength and toughness.

"These chemistries independently are used in a broad range of applications," from dental composites, automobile bumpers to drug delivery materials, Shete said.

However, the process of linking polymers is not simple. It requires two chemical reactions, which are typically initiated through either a lengthy two-step process or a one-step process induced at elevated temperatures and longer time spans.

The method Kloxin and Shete developed is one step and works rapidly at room temperature and ambient conditions.

They use 470-nanometer blue light, which is similar to blue LED light used to detect certain body fluids in crime scene investigations. This light triggers reactions with a photosensitizer called camphorquinone and an activator called amine. These materials are commonly utilized in polymeric dental composites for filling cavities.

The light irradiates the materials to photostimulate the two chemical reactions, but not simultaneously. First up is a reaction called the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click polymerization. This reaction is facilitated by copper, and polymerization occurs in steps. Next is a reaction called the methacrylate polymerization, which forms a plastic-like material in a manner similar to adding links to a growing chain. "This is unique in the way the blue light induces sequential reactions," says Kloxin.

The end result is a material that Kloxin and Shete describe as a "glassy film," less brittle than pure methacrylate and stronger than pure CuAAC at higher temperature. The films made from this IPN material also exhibit shape memory– when deformed, it can be returned to its original size and shape with 15 minutes of heating at 80 degrees Celsius.

This blue-light approach to form interpenetrating polymer networks saves time and energy, but those are not its only advantages. For one, this approach allows Kloxin and Shete to control the pair of chemical reactions with increased precision, allowing them to fashion the polymer networks into complex shapes. This rapid method also keeps the ingredients from separating in a way that could otherwise interfere with the formation of an interpenetrating polymer network.

In addition, the new process requires none of the solvents or additives commonly used in plastics manufacturing, often added to prevent brittle fracture. The materials reported by Kloxin and Shete exhibit enhanced toughness that overcomes this brittleness without any solvents or additives, also making it a greener synthetic approach.

The team has filed a provisional patent for the method described in the new paper. "These chemistries could be attached to other molecules," Kloxin said, and the team will test their applications to form hydrogels, dental materials and other polymer networks.

###

Media Contact

Peter Bothum
[email protected]
302-831-1418
@UDResearch

http://www.udel.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.