• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover how human cells maintain the correct number of chromosomes

Bioengineer by Bioengineer
July 28, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Queen Mary University of London

Cell division is an essential process in humans, animals and plants as dying or injured cells are replenished throughout life. Cells divide at least a billion times in the average person, usually without any problem. However, when cell division goes wrong, it can lead to a range of diseases, such as cancer, and problems with fertility and development, including babies born with the wrong number of chromosomes as in Down's syndrome.

Now researchers at Queen Mary University of London (QMUL), UK, have discovered an important part of the mechanism involved in how chromosomes are pulled apart during cell division, so that one complete set goes into each of the new cells.

"During cell division, a mother cell divides into two daughter cells, and during this process the DNA in the mother cell, wrapped up in the form of chromosomes, is divided into two equal sets. To achieve this, rope-like structures called microtubules capture the chromosomes at a special site called the kinetochore, and pull the DNA apart," said Dr Viji Draviam, senior lecturer in structural cell and molecular biology from QMUL's School of Biological and Chemical Sciences.

"We have identified two proteins – tiny molecular machines – that enable the correct attachment between the chromosomes and microtubules. When these proteins don't function properly, the cells can lose or gain a chromosome. This finding gives us a glimpse of an important step in the process of cell division."

The study, which is published today (Friday 26 July 2017) in the journal Nature Communications [1], helps to explain the condition known as aneuploidy ¬- when cells end up with the wrong number of chromosomes.

Using high resolution microscopes to video the inner workings of live human cells, Dr Draviam and her colleagues at the University of Cambridge (UK) and the European Molecular Biology Laboratory in Heidelberg (Germany), discovered that two proteins – Aurora-B kinase and BubR1-bound PP2A phosphatase – act in opposition to each other, adding or removing phosphate groups respectively, to correctly control the attachment of microtubules to the chromosomes.

Co-author Duccio Conti, who is Dr Draviam's PhD student, said: "We found that a balance between Aurora-B kinase and BubR1-bound phosphatase is important to maintain correct chromosome numbers in human cells."

Understanding the underlying molecular mechanisms of cell division could help in treating a range of diseases and disorders.

"Aggressive cancers often display irregular number of chromosomes. Normal human cells usually have 23 pairs of chromosomes; however, cancer cells can have 50 or more chromosomes. To specifically diagnose the underlying reason for aneuploidy and also to specifically target or treat aneuploidy, one has to understand what causes aneuploidy in the first place," added Dr Draviam.

Some people are born with mutations that predispose them to aneuploidy. One such condition is mosaic variegated aneuploidy (MVA) in which patients lack a small part of the BubR1 protein. It is a very rare condition, but those affected can suffer from microcephaly (smaller than normal head), restricted growth, problems with the brain and nervous system, developmental delay, mental disability and seizures, as well as having an increased risk of cancer.

Dr Draviam said: "It will be useful to see what are the levels of AuroraB kinase in MVA patients who lack portions of the BubR1 gene in their DNA. To counteract the loss of BubR1 in these patients, perhaps Aurora-B could be reduced. Also we are curious to know whether chromosomes are captured normally in patients lacking BubR1-bound phosphatase. This may reveal novel ways to tackle additional changes in chromosome numbers seen in patients who suffer from BubR1 mutations.

"In fertility treatments, it will be useful to study the levels of these two proteins at the kinetochore in order to select healthy eggs to implant in women's wombs to give them the best chance of achieving a successful pregnancy."

Dr Draviam concluded: "By contributing to a molecular understanding of the chromosome segregation process, this work will support future development of predictive markers or drug targets for a variety of disorders linked to irregular chromosome numbers."

###

[1] "Aurora-B kinase pathway controls the lateral to end-on conversion of kinetochore-microtubule attachments in human cells", by Roshan L. Shrestha, Duccio Conti, Naoka Tamura, Dominique Braun, Revathy A. Ramalingam, Konstanty Cieslinski, Jonas Ries & Viji M. Draviam. Nature Communications, doi: 10.1038/10.1038/s41467-017-00209-z

Image available of a human epithelial cell that is preparing to divide into two daughter cells. The image shows rope-like structures called microtubules (in green) that capture chromosomes (in blue) at a highly specialised site called kinetochore (in red). Microtubules impart mechanical forces that pull apart chromosomes into two sets. Errors in this process will cause irregular chromosome numbers, as seen in aggressive cancers.

Media Contact

Mark Byrne
[email protected]
020-788-25378
@QMUL

http://www.qmul.ac.uk

Related Journal Article

http://dx.doi.org/10.1038/10.1038/s41467-017-00209-z

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.