• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Crops that kill pests by shutting off their genes

Bioengineer by Bioengineer
July 27, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plants are among many eukaryotes that can "turn off" one or more of their genes by using a process called RNA interference to block protein translation. Researchers are now weaponizing this by engineering crops to produce specific RNA fragments that, upon ingestion by insects, initiate RNA interference to shut down a target gene essential for life or reproduction, killing or sterilizing the insects. The potential of this method is reviewed in Trends in Biotechnology's upcoming special issue on environmental biotechnology.

As chemical pesticides raise concerns over insect resistance, collateral environmental damage, and human exposure risks, transgenic methods are becoming an attractive option for future pest control. For instance, certain strains of corn and cotton have been modified to produce protein toxins from the bacterium Bacillus thuringiensis (Bt) that poison certain worms, beetles, and moths. RNA interference adds another degree of subtlety, by instead shutting down essential genes in pests that consume crops.

"RNA interference-based pest control can provide protection at essentially no cost because once the variety is developed, the plant can just go on using it instead of needing additional applications of insecticide," says co-senior author Ralph Bock, a director at the Max Planck Institute of Molecular Plant Physiology in Germany.

An RNA interference strategy could also address environmental and human toxicity questions around chemical pesticides. "When we target a key pest with RNA interference technology, what we are really hoping for is to see a big reduction in overall insecticide use," says co-senior author David Heckel, a director at the Max Planck Institute of Chemical Ecology.

Besides application cost and environmental advantages, advocates of the method also point to the flexibility of finding a genetic target and its species specificity. While chemical pesticides such as organophosphates work by overloading an insect's nervous system, a suitable RNA interference target might control something as esoteric, yet indispensable, as cellular protein sorting. Additionally, even when certain target genes are similar across species, optimally designed RNA fragments only inhibit one species and its closest relatives, rather than overwhelming non-threatening insects as some chemical pesticides do.

Earlier attempts at pest control through genetic modification that have involved engineering plants to produce proteins toxic to certain insects have prompted concerns about what happens to those proteins when the crop is harvested and ingested. "The objections to transgenic proteins involve concerns about their possible toxicity or allergenicity to humans, but with the RNA interference strategy there's no protein that is made, just some extra RNA," Bock says.

RNA interference faces multiple obstacles before it could work for all major crops and their pests. On the plant side, scientists have not yet found a way to transform the chloroplast genomes of cereal grains such as rice and corn, the most direct route to producing enough RNA fragments to eliminate pests at a high rate. On the insect side, prominent pests such as some caterpillars can degrade those fragments, staving off shutdown of the target gene.

Bock and Heckel both expect RNA interference technology to be roughly 6 to 7 years away from the field, but they are cautiously optimistic about its potential to change the debate around GMO technology in agriculture. "The Colorado potato beetle is almost worldwide now, even reaching into China," Heckel says. "With such a spread of a main pest that's resistant to insecticides, there's a good case for the development of a transgenic potato to try to halt that trend, and hopefully it will demonstrate enough advantages to overcome the opposition to any and all genetic modifications in crops."

###

This work was supported by the Max Planck Society, the European Research Council, the National Natural Science Foundation of China, the National Key Research and Development Program of China, the Science and Technology Department of Hubei Province of China, and the Recruitment Program of Global Experts.

Trends in Biotechnology, Zhang et al.: "Next Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection" http://www.cell.com/trends/biotechnology/fulltext/S0167-7799(17)30090-2

Trends in Biotechnology (@TrendsinBiotech), published by Cell Press, is a monthly review journal of applied biosciences. It addresses what is new, significant, and practicable in the integrated use of many biological technologies — from molecular genetics to biochemical engineering. Visit: http://www.cell.com/trends/biotechnology. To receive Cell Press media alerts, please contact [email protected].

Media Contact

Arjuna Subramanian
[email protected]
617-335-6270
@CellPressNews

http://www.cellpress.com

http://dx.doi.org/10.1016/j.tibtech.2017.04.009

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Essential Oils: A Shield Against Fungi in Heritage

August 24, 2025
Curcumin Shields Microenvironment to Block Colon Cancer Metastasis

Curcumin Shields Microenvironment to Block Colon Cancer Metastasis

August 24, 2025

Unique Midgut Symbiosis in Stinkbug Development Unveiled

August 24, 2025

First Whole-Genome Sequence of Mycobacterium avium in Geese

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    100 shares
    Share 40 Tweet 25
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Real-World Study: Efficacy of Loxenatide Plus Insulin

Essential Oils: A Shield Against Fungi in Heritage

Link Between hs-CRP/HDL-C Ratio and Diabetes Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.