• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Risk for bipolar disorder associated with faster aging

Bioengineer by Bioengineer
July 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New King's College London research suggests that people with a family history of bipolar disorder may 'age' more rapidly than those without a history of the disease.

The study, published today in Neuropsychopharmacology, also shows that bipolar patients treated with lithium — the main medication for the illness — have longer telomeres (a sign of slower biological ageing) compared to bipolar disorder patients not treated with lithium. This suggests that the drug may mask the ageing effects associated with bipolar disorder, or even help to reverse it.

Faster ageing at the biological level could explain why rates of ageing-related diseases such as cardiovascular disease, type-2 diabetes and obesity are higher amongst bipolar disorder patients. However, more research is needed in the relatives of bipolar disorder patients to better understand if they are also at a higher risk for ageing-related diseases.

Unaffected first-degree relatives represent a group of individuals at risk for bipolar disorder who have not been treated with medications, so studying them may represent a truer reflection of the relationship between ageing and bipolar disorder. To measure biological ageing, the researchers studied a feature of chromosomes called telomeres in 63 patients with bipolar disorder, 74 first-degree relatives and 80 unrelated healthy people.

Telomeres sit on the end of our chromosomes and act like 'caps', protecting the strands of DNA stored inside each of our cells as we age. Telomeres shorten each time a cell divides to make new cells, until they are so short that they are totally degraded and cells are no longer able to replicate. Telomere length therefore acts as a marker of biological age, with shortened telomeres representing older cells, and commonly older individuals.

The rate at which telomeres shorten across our lifespan can vary, based on a range of environmental and genetic factors. This means that two unrelated people of the same chronological age may not be the same age biologically.

The researchers from King's College London and the Icahn School of Medicine at Mount Sinai found that healthy relatives of bipolar patients had shorter telomeres compared to healthy controls (who had no risk for the disorder running in their family). This suggests that genetic or environmental factors associated with family risk for bipolar disorder are also linked to faster biological ageing.

They also conducted MRI (magnetic resonance imaging) scans to explore the relationship between telomere length and brain structure, particularly in the hippocampus, an area of the brain involved in the regulation of mood. They discovered that higher rates of biological ageing (i.e. shorter telomeres) were associated with having a smaller hippocampus.

The study authors suggest that a reduction in telomere length may be associated with a reduced ability of new brain cells to grow in the hippocampus, which can reduce the size of the hippocampus and consequently increase risk for mood disorders such as bipolar disorder.

Dr Timothy Powell, first author of the study, from the Institute of Psychiatry, Psychology & Neuroscience (IoPPN) at King's College London, said: 'Our study provides the first evidence that familial risk for bipolar disorder is associated with shorter telomeres, which may explain why bipolar disorder patients are also at a greater risk for ageing-related diseases.

'We still need to dissect the environmental and genetic contributions to shortened telomeres in those at high risk for bipolar disorder. For instance, do those at risk for bipolar disorder carry genes predisposing them to faster biological ageing, or are they more likely to partake in environmental factors which promote ageing (e.g. smoking, poor diet)? Identifying modifiable risk factors to prevent advanced ageing would be a really important next step.'

Dr Sophia Frangou, co-senior author of the study, from the Icahn School of Medicine at Mount Sinai, said: 'Our study shows that telomere length is a promising biomarker of biological ageing and susceptibility to disease in the context of bipolar disorder. Moreover, it suggests that proteins which protect against telomere shortening may provide novel treatment targets for people with bipolar disorder and those predisposed to it.'

Dr Gerome Breen, co-senior author, also at IoPPN, said: 'Up to now it has been unclear whether or not bipolar disorder patients are at risk of accelerated ageing. This study shows that they are at greater risk of faster ageing and drugs commonly used to treat the disorder may actually mask or reverse this effect.'

###

This study was funded by a Psychiatry Research Trust grant, the National Institutes of Mental Health and the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre.

Media Contact

Jack Stonebridge
[email protected]
020-784-85377
@kingscollegelon

http://www.kcl.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.